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Abstract

A number of bioinformatics tools use regular
expression (RE) matching to locate protein or
DNA sequence motifs that have been discovered
by researchers in the laboratory. For exam-
ple, patterns representing nuclear localisation
signals (NLSs) are used to predict nuclear lo-
calisation. NLSs are not yet well understood,
and so the set of currently known NLSs may
be incomplete. Here we use genetic program-
ming (GP) to generate RE-based classifiers for
nuclear localisation. While the approach is a
supervised one (with respect to protein loca-
tion), it is unsupervised with respect to already-
known NLSs. It therefore has the potential to
discover new NLS motifs. We apply both tree-
based and linear GP to the problem. The in-
clusion of predicted secondary structure in the
input does not improve performance. Bench-
marking shows that our majority classifiers are
competitive with existing tools. The evolved
REs are usually “NLS-like” and work is under-
way to analyse these for novelty.

1 Introduction

Many bioinformatics tools aim to increase our
knowledge about the growing number of pro-
teins for which little experimental information
is available. One important approach is to
transfer annotations from characterised pro-
teins to less well studied proteins. This is

usually achieved through similarity searches
against databases of whole sequences (e.g.
with BLAST[1] or FASTA[22]) or domain li-
braries (e.g. INTERPRO[19]), or with more
localised motif or subsequence searching (e.g.
PROSITE[3] and PRATT[12]). On the other
hand, there are many tools which directly pre-
dict aspects of protein function without refer-
ence to previously known proteins. For exam-
ple, protein functional categories can be pre-
dicted to some extent with neural networks
trained on sequence-derived properties[11]. A
number of groups have developed methods
to predict the subcellular compartment(s) in
which a protein does its job[21, 7]. Subcellular
location is important low-resolution functional
information which can guide experimental work
and speed progress.

In eukaryotic cells, the nucleus is one such
compartment of great importance. Most control
mechanisms converge on the nucleus, where the
paradigm states that genes (which usually en-
code proteins) are turned on and off in response
to changing conditions. Proteins are manufac-
tured on ribosomes outside the nucleus, and
must get back to the nucleus if they are needed
there. Most are actively transported in an
energy-consuming process through the so-called
nuclear pore complex [16]. Import through the
nuclear pore is controlled by proteins called
importins which bind to short recognition se-
quences on the cargo proteins called nuclear
localisation signals (NLS). A number of NLS
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subtypes have been identified experimentally[5],
and regular expressions (REs, basically the
same thing as PROSITE patterns) have been
developed for them[6].

Clearly, one way to determine nuclear local-
isation for a protein is to scan its sequence
against a library of known NLS motifs[6]. This
will not be sufficient, of course, for proteins
which do not contain these particular motifs but
perhaps contain some other kind of NLS which
has not yet been discovered. Here we need
a more generalised approach like, for exam-
ple, neural network-based predictors which take
amino acid frequencies as input[23, 20]. Pre-
dictors which use only this global information
perform less well than pattern-based methods,
however. Hybrids methods using both global
and pattern information, such as PSORT II[21],
may perform better. PSORT II may be disad-
vantaged, however, because it uses only a small
set of NLS REs.

Here, we make hybrid predictors that are not
restricted to a predefined set of NLS patterns.
Our approach is to use genetic programming[14]
(GP) to evolve classifiers which can, if required,
simultaneously consider global information (e.g.
amino acid frequencies) and local sequence mo-
tifs. These motifs are not predefined, but are
evolved at the same time as the other classi-
fication rules. Koza et al presented the first
GP system for evolving sequence classifiers for
subcellular location[15]. They used a low-level
automaton-like implementation, and because of
this, perhaps, they did not present, analyse or
distribute the evolved classifiers. By choosing
higher-level implementations for pattern match-
ing in GP we make the eventual post-analysis
more straightforward.

In this paper, we have benchmarked a num-
ber of implementation variations: including
two different genetic programming systems,
and have experimented with predicted sec-
ondary structure as an extra input. Sim-
ple combinations of multiple predictors are
shown to improve performance. Our results
are competitive with both PSORT II and
PredictNLS[6]. A web interface is provided

for the community and work is continuing
to propose biological explanations and possi-
bly novel NLSs for proteins that our meth-
ods confidently and uniquely predict as nuclear.
http://www.sbc.su.se/∼maccallr/nucpred

2 Methods

2.1 Data for Supervised Learning

Swiss-Prot[2] is an expert-maintained protein
“knowledgebase” and is the source of our train-
ing data. We extracted two sets of proteins (and
their sequences) from Swiss-Prot release 40 (8
Jan 2003) according to the following definitions:

nuclear – subcellular location annotation
matches ‘nuclear’ (4135 proteins)

non-nuclear – eukaryotic proteins where the
subcellular location annotation contains
‘cytoplasmic’, ‘mitochondrial’, ‘chloro-
plast’, ‘peroxisomal’, ‘extracellular’, ‘endo-
plasmic reticulum’ but not ‘nuclear’ (6055
proteins)

In both sets above, proteins are excluded
where the subcellular location is annotated as
‘by similarity’, ‘probable’, ‘possible’, ‘potential’,
or ‘predicted’. Because we do not discard pro-
teins with multiple locations (as some others
have done), our two sets should strictly be de-
scribed as “proteins which have a role in nu-
cleus” and “proteins which have no role in the
nucleus”. Two separate non-redundant bench-
mark sets, A and B, were generated from these
proteins, as detailed in the supplementary in-
formation (http://www.sbc.su.se/∼maccallr/
supplementary/heddad2004). These benchmark
sets are both divided into a 10-fold cross-
validation set (A has 1368 nuclear and 1231
non-nuclear proteins; B has 760 nuclear and
1147 non-nuclear proteins) and a final valida-
tion set (A 456 nuclear, 412 non-nuclear; B 178
nuclear, 293 non-nuclear).
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2.2 Fitness evaluation

We use a correlation coefficient called MCC
(first used by Matthews in the area of com-
putational biology[18]) as the fitness measure
for our classifiers evolved by genetic program-
ming. MCC conveniently takes into account
both over-prediction and under-prediction and
imbalanced data sets. It is defined as:

MCC =
tp× tn− fn× fp√

(tn + fn)(tn + fp)(tp + fn)(tp + fp)

True positives (tp) are correctly predicted nu-
clear proteins, true negatives (tn) are correctly
predicted non-nuclear proteins, and so on.

2.3 PerlGP Implementation

In PerlGP[17], evolved code is expanded from
a tree-based genotype into a string before be-
ing evaluated with Perl’s eval() function. The
trees of each individual are built (and later, mu-
tated) according to a grammar and are strongly
typed. In this application, we want the evolved
code to look like the example given in Fig-
ure 3; that is to say, the solution should be some
arithmetic expression containing constants and
RE matches against a protein sequence. The
matches() function feeds the number of sep-
arate RE matches into the arithmetic expres-
sion. If the result of the expression for a
given sequence is greater than zero, it is pre-
dicted/classified as nuclear, otherwise it is non-
nuclear.

The grammar for the arithmetic is fairly
standard, the operators are + - * pdiv(x,y)

plog(x), where pdiv and plog are protected
functions. The RE grammar is given in Fig-
ure 1 in PerlGP syntax, and includes character
classes, nesting/grouping and quantifiers.

2.3.1 Secondary structure predictions
and “dual REs”.

PSIPRED[13] was used with default parame-
ters to predict the secondary structural state
for each amino acid in the protein: helix (H),

strand (E for extended) and coil (C). We pro-
vided GP with a function to perform parallel
matching with two REs against two sequences
of the same length but with different alphabets
(amino acid and predicted secondary structure).
The first RE is matched against the first se-
quence and the positions of matching fragments
are noted. The second RE is then matched
against fragments of the second sequence cor-
responding to those found in the first, and the
number of matches are returned. This can be
applied in either order: sequence→structure or
structure→sequence.

2.4 Linear GP Implementation

We have modified a linear GP (LGP) system[4]
to the needs of this study. In LGP the program
representation basically consists of variable-
length sequences of instructions from an imper-
ative programming language. Operations ma-
nipulate variables (registers) and constants and
assign the result to a destination register, e.g.,
r0 := r1 + 1. In this modification, each GP in-
dividual has two parts (see Fig. 5 for example
code). In the first, a set of REs is defined, and
registers are loaded with the results of matching
them against the protein sequence input string.
In the second, the registers are manipulated
with arithmetic operations. For each data in-
stance, the final value of r[0] is used for clas-
sification as described in Section 2.3. Regular
expression support is provided by the PCRE li-
brary [9].

2.5 GP Parameters

Both implementations were run with non-
migrating populations of 2000 individuals and a
tournament selection scheme. In LGP, the num-
ber of evolved REs was 10, and the maximum
program length (second part) was 50 instruc-
tions. Full details of parameters are available
in the supplementary web material (URL given
in Section 2.1).
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$F{REGEXP} = [ ’{REGEXP}{REGEXP}’, ’({REGEXP}){QUANT}’
’{AAS}{REPEAT}’, ’[{HAT}{AAS}]{REPEAT}’ ];

$F{AAS} = [ ’{AA}’, ’{AAS}{AAS}’ ];

$T{REGEXP} = [ ’.’ ]; $T{HAT} = [ ’’, ’^’ ]; $T{REPEAT} = [ ’’, ’+’ ];
$T{QUANT} = [ ’{1,1}’, ’{1,3}’, ... ’{3,8}’ ];
$T{AAS} = $T{AA} = [ ’A’, ’C’, ’D’, ’E’, ’F’, ... ’V’, ’W’, ’Y’ ];

Figure 1: Grammar definition (simplified and abbreviated) for the generation of regular expressions
in the PerlGP implementation. The F and T hash tables contains function (branching) and terminal
(non-branching) nodes respectively. Note that this is very close to the Backus-Naur format for
grammars, the main difference being that 〈type〉 is written here as {TYPE} and ::= becomes =.

3 Results and Discussion

3.1 PerlGP

3.1.1 Strategies.

Three approaches for generating GP individuals
were tested:

• Strategy 1 evolves expressions containing
only trivial REs which count the occur-
rences of single amino acids.

• Strategy 2 evolves expressions containing
full REs for amino acid sequence.

• Strategy 3 as Strategy 2 plus “dual REs”
using an additional input of predicted sec-
ondary structure.

Because the size of the search space differs
between strategies, we tried to allow sufficient
run-time in each case so that we could charac-
terise the learning (and over-training) dynam-
ics. Figure 2 shows the final fitnesses for a
set of 10-fold cross-validation runs with differ-
ent run-times using data from Set A. Relying
only on amino-acid composition, strategy 1 per-
forms poorly compared to the approaches able
to detect local sequence motifs. Strategy 1 also
exhibited over-training after around 40 hours.
Strategies 2 and 3 did show a gap between train-
ing and testing performance but we conclude
from Figure 2 that “pathological” over-training
(where test set performance is no longer show-
ing the same trends as the training fitness) has
not yet occurred.

Since proteins are three-dimensional objects
which usually interact with each other and the
cellular machinery at their surfaces, we expect
signal sequences to be present on the surface
of proteins. Although the actual 3D structure
is only available for some proteins in our data
sets, the predicted secondary structure can be
obtained for all (see Section 2.3). Geometric
considerations lead us to hypothesise that signal
motifs should be more common in coil regions
than in helix and strand, where they would be
less accessible (strand in particular). Strategy
3 was introduced to see if GP could take advan-
tage of this possible source of extra informa-
tion. Based on test set performance (see Fig. 2)
we conclude that it does not, but many of
the evolved expressions (not shown) do behave
as expected and restrict the sequence pattern
search to predicted coil regions. Others have re-
cently shown surface/non-surface predictions to
be of use in composition-based predictions[20].

Many of the evolved expressions from strat-
egy 2 contain REs which broadly agree with the
patterns derived for actual NLSs, in that they
contain a lot of arginine (R) and lysine (K). One
of the more compact solutions is shown in Fig-
ure 3. We are currently working to gain a deeper
understanding of the relationship between our
evolved REs and already-known NLS motifs.

3.1.2 Majority classifiers.

Perhaps one disadvantage of evolutionary com-
putation compared to more deterministic opti-
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Figure 2: Best-of-tournament training fitness and testing performance obtained at the end of separate
10-fold cross-validation experiments (dataset A) with different run-times. Test set performance is
calculated from the pooled “left-out” data, and individuals were selected on the basis of training
fitness only. Training fitnesses are calculated as the mean training fitness over the 10 cross-validation
runs.

misation strategies is that runs often fall into
local minima and explore mutually exclusive
regions of solution space. This can often be
turned into an advantage however by combining
the “knowledge” of separately evolved classifiers
into one “meta-classifier”.

A new set of 10×10-fold cross-validation runs
using strategy 2 were performed. Dataset B
is now used, after we found that dataset A is
liable to over-estimate performance (see Sec-
tion 2.1 and supplementary information). The
smaller dataset and a few other optimisations
mean that training for 36 hours is now suffi-
cient. The mean MCC on the test set proteins
is now just 0.29. From past experience we sus-
pect that majority voting by different classifiers
will produce better results. For each test-set
partition of the cross-validation set, we can do
a majority vote using the 10 different evolved
predictors which were not trained on that data.
This means that for each protein, 5 or more of

the 10 classifiers must predict “nuclear” in or-
der to classify a protein as such. Using this
approach, the MCC for goes up to 0.38 from a
mean of 0.29 for the individual predictors.

3.1.3 Final validation set.

If we want to combine all 100 evolved predictors
then we must use the final validation set (see
Section 2.1) because none of these sequences (or
their close relatives) have been used in the cross-
validation training runs. We restarted each
of the 100 populations and performed a sin-
gle tournament using the entire cross-validation
set as the “training set” and chose the best-
of-tournament individuals (on training data)
for the final validation set performance calcula-
tions. The mean MCC for individual predictors
on this set is 0.33. When 50 or more predictors
out of 100 vote nuclear then the MCC again
rises to 0.47. Of course, thresholds other than
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$nuclear = (((((matches($seq, qr/[K][R]/)
+ matches($seq, qr/([KR])([KR]+)[RKHM]/))
+ matches($seq, qr/([KRH])([RQ]+)[RKYM]+/))
+ matches($seq, qr/(([RKHD]){1,4}([R])[FKMT]+)[KRH]/))
- matches($seq, qr/AKV/))
- matches($seq, qr/[^W]+/));

Figure 3: Example of an evolved nuclear localisation predictor. If the result is greater than zero, the
protein with sequence $seq is predicted to be nuclear.

50 can be used, and this is described below.

3.1.4 Comparison with other methods.

We give the name “NucPred” to the strategy 2
approach, and define the NucPred score as the
fraction of predictors (usually 100) which vote
nuclear. In Figure 4 we show the performance of
NucPred, in terms of sensitivity and specificity,
at different score thresholds and compare this
with the performance of the two most widely
used existing methods: PSORT II and Pre-
dictNLS. On this data (validation set B), the
NucPred approach does a little better than all
other at all sensitivities. However, previous re-
sults trained and validated on dataset A showed
NucPred to be equal to PSORT II and slightly
worse than PredictNLS, so the exact ranking of
methods is difficult. The best performance at
high specificity on validation set B is obtained
using combinations of NucPred and PredictNLS
(see Figure 4 for details).

3.2 Linear GP

Our work evolving Perl-based classifiers has
shown that string matching code can be pro-
duced at a high level (using REs), providing
an alternative to low level approaches where
the matching mechanism is evolved as part of
the solution[15, 10]. This should reduce search
space complexity and solutions will also be more
human-readable. However, the PerlGP solu-
tions often contain duplicate REs which are
wastefully matched more than once against the
same sequence. With our linear GP (LGP)
system[4], it is possible to perform the RE
matches once and use their results many times

during calculation of the final output (see Sec-
tion 2.4 and Fig. 5 for further details). Addi-
tionally, no crossover is allowed between REs
in the individuals, so duplications of complex
REs are highly improbable. The LGP system
has a mechanism for removing ineffective code
prior to evaluation[4]. This is particularly use-
ful because it automatically identifies which of
the evolved REs are not used, and does not per-
form the (relatively expensive) match for them.
We were also interested in measuring the per-
formance of simpler forms of RE than were used
with the Perl system.

Cross-validation set B was used to generate
LGP classifiers (500 generations). Combina-
tions of two strategies were tested: building REs
with and without character sets (a character set,
e.g. “[FWV]”, means match either F,W or V);
and loading the registers with the number of
RE matches (multiple) or simply zero or one
signifying non-match or match (boolean).

Classification performance figures for the fi-
nal validation set are shown in Tables 1&2. The
LGP performance is very close to the PerlGP
results for both individual predictors (mean
MCC = 0.33) and majority voting (MCC =
0.46). The sensitivity-specificity curves (not
shown) for the best performing LGP configu-
rations are also similar to the one in Figure 4.
The relative performances of the RE strategies
were interesting: individuals using REs without
character sets (essentially just short sequences
of amino acids) performed almost identically to
those with character sets. Boolean matching in
general does not perform well although, as ex-
pected, the use of character sets helps. Boolean
matching may also encourage more “interest-

6



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

sp
ec

ifi
ci

ty
 tp

/(t
p+

fp
)

sensitivity tp/(tp+fn)

  T=0.9

  T=0.7

  T=0.5

  T=0.3

  T=0.1
NucPred score >= T

Mean of NucPred individuals
PSORT II via web

PredictNLS v1.1
NucPred >= 0.8 AND PredictNLS
NucPred >= 0.9 AND PredictNLS

Figure 4: Performance of NucPred, PSORT II and PredictNLS on validation set B (471 sequences).
Specificity and sensitivity are shown for different thresholds of NucPred score (fraction of predictors
voting “nuclear”).

ing” REs to evolve (data not shown). An ex-
ample classifier is shown in Figure 5.

4 Final Remarks

We have, with relative ease, evolved classifiers
which use global and local sequence information
and which are least as good as other published
methods. Direct comparison is always difficult
because of differences in test set construction.
Further improvements can be gained by build-
ing a multi-location predictor[21, 7] since, for
example, proteins predicted to be integral mem-
brane proteins are unlikely to be nuclear.

In both of the GP implementations we used,
the RE matching is performed by efficient C-
coded routines. We have not performed run-
time profiling, but we suspect that the RE
matching is the principal drain on CPU in our
two approaches and for the evolution of REs in
general. Interestingly, the results from the “no
character set” LGP runs suggest that this clas-

sification problem may not require RE match-
ing at all – it may be sufficient (and much more
efficient) to pre-calculate all the frequencies of
all k-tuplets (1 ≤ k ≤ 3) and store them in
hash tables. Structural biology, however, sug-
gests that longer sequences are involved in the
nuclear import recognition process[8].
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