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Abstract

Current approaches to contact map prediction in proteins
have focused on amino acid conservation and patterns of
mutation at sequentially distant positions. This sequence
information is poorly understood and very little progress
has been made in this area during recent years.

In this study, an observation of “striped” sequence pat-
terns across β-sheets prompted the development of a new
type of contact map predictor. Computer program code
was evolved with an evolutionary algorithm (genetic pro-
gramming) to select residues and residue pairs likely to
make contacts based solely on local sequence patterns ex-
tracted with the help of self organising maps. The mean
prediction accuracy is 27% on a validation set of 156 do-
mains up to 400 residues in length, where contacts are sep-
arated by at least 8 residues and length/10 pairs are pre-
dicted. The retrospective accuracy on a set of 15 CASP5
targets is 27% and 14% for length/10 and length/2 pre-
dicted pairs respectively (both using a minimum residue
separation of 24). This compares favourably to the equiv-
alent 21% and 13% obtained for the best automated con-
tact prediction methods at CASP5. The results suggest
that protein architectures impose regularities in local se-
quence environments. Other sources of information, such
as correlated/compensatory mutations, may further im-
prove accuracy.

A web-based prediction service is available at
http://www.sbc.su.se/~maccallr/contactmaps

Introduction

Protein structure prediction by simulated folding is diffi-
cult due to the huge search space and the use of energy
functions that are inaccurate and computationally expen-
sive. Because the three-dimensional structure of a protein
may be reconstructed from inter-residue contacts, con-
tact prediction offers a possible shortcut to predict pro-
tein structure. Contacts are defined as pairs of residues
in a folded protein which are close in space, according to
some predefined threshold. On a trivial level, pairs of hy-
drophobic residues are more likely to be in contact than
other pairs of amino acid types, but even statistical pair
potentials (Sippl, 1990) do not produce sufficiently spe-
cific contact predictions. More specific information ap-
pears to come from neighbouring residues and patterns
of mutation, conservation and predicted secondary struc-
ture, all obtained from multiple sequence alignments of

family members (Gobel et al., 1994; Taylor and Hatrick,
1994; Lund et al., 1997; Olmea et al., 1999; Fariselli et al.,
2001; Fukami-Kobayashi et al., 2002; Pollastri and Baldi,
2002; Zhao and Karypis, 2003). Typically, neural net-
works or support vector machines are used to predict con-
tacts or distance maps from these multiple sources infor-
mation. From a theoretical point of view, the idea that
compensatory (or correlated) mutations at two positions
are indicative of physical interaction is attractive (Gobel
et al., 1994). However, a recent study (Zhao and Karypis,
2003) and many years of evaluation of contact prediction
at CASP (Lattman, 1995) have shown that this infor-
mation is very weak. While more sophisticated methods
exist to detect correlated mutational behaviour (Fukami-
Kobayashi et al., 2002), they have yet to be tested in au-
tomated contact prediction. It may be the case that some
other source of information must be exploited to improve
contact prediction algorithms.

In this paper I describe a new technique for viewing
amino acid sequence profiles on 3D structures. Using this,
it is striking that in many proteins there are pairs of neigh-
bouring strands with similar sequence patterns. This
prompted the development of a new contact prediction
algorithm, which was generated automatically by an evo-
lutionary machine learning approach called genetic pro-
gramming. The performance of this predictor, which uses
only sequence profile and residue separation information
as input, is approximately equal to or better than existing
automated contact predictors which use more sources of
information.

Datasets

SCOP domain sequences

A set of 2036 protein domains with pairwise sequence
identity not more than 10% was taken from the ASTRAL
subsets of SCOP release 1.55 (Brenner et al., 2000). These
were split randomly into two sets: T (1573 domains) and
V (463 domains), such that no pair of sequences belong-
ing to different sets share the same SCOP superfamily.
Subsets of T and V containing just one representative
per superfamily were produced as follows: T → training
(451 domains) and testing (227 domains) sets, and V →
validation set (170 domains).

During training and evaluation of the contact predic-
tors, only domains with length L ≤ 400 are used. Also, a
small number of domains with residue numbering or PDB
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format problems are discarded. As a result, the training,
testing and validation sets effectively contain 430, 209 and
156 domains each.

CASP5 targets

For the retrospective CASP5 analysis, the same 15
“sequence-unique” targets from the EVA/CAFASP-3
evaluation (Eyrich et al., 2003) were used. These have no
obvious homology to proteins in the Protein Data Bank at
the time of the CASP5 experiment (May 2002) and there-
fore also neither to release 1.55 of SCOP (March 2001)
which has been used for training and validation in this
work. The targets range in size from 111 to 414 residues
and are: T0138, T0146, T0147, T0148, T0149, T0156,
T0157, T0159, T0161, T0172, T0173, T0174, T0181,
T0187, T0193.

Sequence profile visualisation in 3D

Background

PSI-BLAST.

PSI-BLAST (Altschul et al., 1997) is a widely used tool
for sensitive protein sequence database searching. Like
a number of other search techniques it makes use of se-
quence profile information. Sequence profiles are basi-
cally a summary of the amino acid types present at each
sequence position (column) in a multiple alignment of se-
quence family members, and may be calculated as fre-
quencies or log-odds ratios, for example. During the evo-
lution of a protein family, both structural and functional
constraints influence the types of amino acids allowed at
each position in the protein. A large part of the struc-
tural signal in sequence profiles is related to secondary
structure.

The mapping between sequence and structure has been
explored extensively in the literature, and most notably in
the work relating to the I-sites library and HMMSTR local
structure prediction tool (Han and Baker, 1996; Bystroff
and Baker, 1998; Bystroff et al., 2000). It has been shown
that sequence-structure correlations exist for different cat-
egories of helix, strand and turn, and also for supersec-
ondary structure motifs. Although this area has been well
studied, I was curious to try a different approach to lo-
cal sequence profile clustering. Sequence profiles contain
a lot of information. There are usually 20 or 21 values
per sequence position, and so a window of 15 residues,
for example, is represented by 15 × 20 = 300 values. In
the next section, a technique which can help make some
visual sense of this data is described.

Self organising maps.

Visualisation of high-dimensional data is always problem-
atic. Many techniques exist to reduce the information
into an observable number of dimensions (typically 2 or
3). These include principal components analysis, multi-
dimensional scaling, singular value decomposition, and a
host of clustering techniques, of which some are deter-
ministic and others not. One common non-deterministic

approach is known as k-means clustering. Here a pre-
determined number (k) of cluster centroids (means) are
initialised randomly, then each data point is assigned to
the nearest cluster centroid, then the centroids are re-
calculated, and the process continues until convergence.
The self organising map (SOM) of Kohonen and Mak-
isara (1989) is similar to the k-means algorithm, except
that the reference vectors (equivalent to the centroids)
are arranged on a grid and are somewhat connected. The
standard SOM algorithm is outlined below, assuming d-
dimensional “input” vectors:

• initialisation: create a 2D grid of d-dimensional
vectors, v, with random starting values

• training: for each of E epochs:

1. for each data point x:
(a) find the closest grid vector, vwin, to point x ac-

cording to some distance measure (e.g. Eu-
clidean)

(b) update vwin towards x by a small amount
vwin = vwin + α(x− vwin)

(c) update neighbours of vwin within a certain ra-
dius r in the same way, but by a smaller
amount

2. reduce radius r and training rate α

• application: any data point x can be assigned to a
“winning” grid vector, vwin

After training a SOM, any d-dimensional vector can be
mapped to a position on the grid. The result is that data
points which are close in the input space are mapped to
the same or neighbouring grid nodes wherever possible.
Thus, convoluted multi-dimensional data may be “flat-
tened” onto a 2D grid with the maintenance of local (and
to some extent, global) relationships. The SOM also gives
more space/priority in the map to the more densely pop-
ulated areas of the input space, and so also operates as a
type of noise filter.

In this work, a variant of the standard SOM algorithm
has been used. Firstly a 3D output grid was used. Sec-
ondly the neighbourhood function was square/cubic (nor-
mally it is circular) for implementation and speed reasons.

Mapping windows of sequence profiles

The amino acid sequences of 1573 protein domains of
known structure (set T , described above) were extracted
from their 3D coordinate files. Using scripts from
the PSIPRED 2.3 package (Jones, 1999), PSI-BLAST
searches were performed with each sequence against a set
of non-redundant protein sequences (NCBI’s “nr” data
from 22 July 2002) and sequence profile matrices were
generated. These matrices have 21 rows and L columns,
where L is the length of the protein in residues. The total
number of columns in this data is 262,503.

A series of 6× 6× 6 SOMs were trained using 100,000
randomly selected w × 21 submatrices (windows) ex-
tracted from the sequence profile matrices. When a win-
dow extends outside a matrix, it is padded with zeroes.
Values for w between 1 and 15 were tried. The number of
epochs was 6 and the SOM parameters were α = 0.1 and
r = 3.
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After training, the SOMs can be used to map all over-
lapping sequence profile windows of a protein. The result
is a list of winning map coordinates, a L×3 matrix of inte-
ger values ranging from 0 to 5 (the map is 6×6×6, remem-
ber). For visualisation purposes, the integer triplets can
be scaled and used as RGB (red, green, blue) triplets, i.e.
colours. These colours can then be used for each residue
in a 3D protein viewer. It is important to note that there
is no correspondence between the colour schemes made
with different SOMs (for example, using different win-
dow sizes or random seeds). The green region may mean
“hydrophobic” in one map and “polar” in another, for
example.

Example mappings

Figure 1 presents two protein domains with SOM-derived
colour schemes. By comparing parts (a) and (b) it can
be seen that that larger window sizes produce more dis-
tinctive colour patterns, particularly in the two central
strands of the parallel These two strands have a very
similar sequence of six colours (see Figure 1(b) and cap-
tion), which would occur by chance with a very low prob-
ability (something in the range of 10−12 to 10−5). It is
assumed that this striping is a consequence of the simi-
larity of the structural environments through which the
strands pass. The structural environments here are de-
fined purely from sequence information like those of Han
and Baker (1995) and are more fine-grained than those
originally presented by Bowie et al. (1991). The strand
pair relationships become more apparent as the window
size is increased because the surrounding sequence infor-
mation contains information about secondary structure
which helps to pin down location within a protein fold (for
example, N-terminus of exposed strand vs. C-terminus of
buried strand). Colour sequence similarities between anti-
parallel and “facing” strand pairs are also seen, as shown
in Figure 1(c&d), although these seem to be less common.

Contact prediction

Overview of approach

If similar sequences of SOM-derived sequence profile
classes/colours (now abbreviated to SDPCs) are indeed
indicators of paired or nearby strands, then the informa-
tion should be of use in contact prediction. One approach
might be to use neural networks or similar tools to clas-
sify pairs of residues as contacting/non-contacting using
SDPCs and sequence separation as input. However, an
approach more closely related to non-linear regression is
used here, with no particular justification except that the
solution may have fewer parameters (to overfit) compared
to neural networks. An outline of the prediction strategy
applied to each protein sequence in this study is given
below:

• produce a PSI-BLAST profile and perform SOM
mappings (with pre-trained SOMs with different win-
dow sizes) to produce a set of L× 3 SDPC matrices
(SDPCs)

• for all residues i, apply the function:
residue_score(i, SDPCs)

• define set R as the top scoring L/5 residues
• for all pairwise combinations i, j of residues R, (where
|i− j| ≥ r, and r is the minimum residue separation)
apply the function:
pseudo_distance(i, j, SDPCs)

• define the set P as the “closest” L/10 pairs
• classify the members of P as contacts and non-

members as non-contacts

The functions residue_score() and
pseudo_distance() will be evolved using genetic
programming, as described below. First, I discuss their
desired behaviour. The first “filter” function should pre-
select a set of residues that are likely to make contacts,
such as hydrophobic and/or strand residues. The second
“distance” function should attempt to automate some
of the visual analysis described above, that is to return
a small value for residue pairs belonging to parallel
and anti-parallel strands with similar SDPC patterns.
Also, if possible, the function should be able to identify
contacts where other specific SDPC combinations are
seen (perhaps involving helices), and also make use of
|i − j| (at large sequence separations, contacts are less
likely). It might be possible to design such a function and
then optimise the parameters by some means or other.
As described below, however, genetic programming can
“design” the function and optimise the parameters at the
same time.

Genetic programming

Genetic programming (GP) is an evolutionary
search/optimisation technique for generating com-
puter program code to perform some particular task.
Like the more familiar genetic algorithm (GA) the
approach is inspired by nature and is based around
a randomly initialised population of individuals. The
individuals undergo selection on the basis of fitness with
respect to the target behaviour, followed by reproduction,
recombination and mutation. This is repeated until a
satisfactory solution is produced.

In evolutionary algorithms, as in natural evolution, in-
dividuals are specified by genetic information (genotype),
which is somehow transformed into a functional individual
(phenotype). In a typical GA, the genotype is linear (like
in biology), and the “genes” on this “chromosome” often
correspond to the parameters of an optimisation problem.
In GP, however, the genotype is often implemented with
a tree-like chromosome, because this is a more convenient
way to represent program code (see Figure 2). Manipula-
tions are also often performed at the tree-level, and so a
recombination event (also called crossover) would involve
the swapping of subtrees between two individuals, and a
macro-mutation might involve deleting an entire subtree,
for example.

GP implementation

The open source GP system PerlGP (MacCallum, 2003)
was used to produce the two functions discussed above. In
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(a) d1ekja_, w = 1 (b) d1ekja_, w = 15

(c) d1qhoa2, w = 15 (d) d1qhoa2, w = 15 (e) d1bvyf_, w = 15

Figure 1: Molscript (Kraulis, 1991) cartoons of protein domains coloured using SOM-derived sequence profile information.
In (a), a w = 1 SOM is used (single columns of profiles) to colour chain A of PDB entry 1EKJ (Kimber and Pai, 2000).
Hydrophobic regions tend to have greenish colours but this is not very interesting. In (b) the same domain is shown
with colours from a w = 15 SOM. Now there is a striking coincidence of the following colour sequence: purple, magenta,
dark blue, “blue 1”, “blue 2”, “blue 3”, in the two central neighbouring strands. In (c) and (d), domain 2 (as defined
by SCOP) from chain A of PDB entry 1QHO (Dauter et al., 1999) is shown with the same colour scheme as in (b). In
(d), the anti-parallel and facing strands with similar colour patterns are highlighted. In (e), chain F of PDB entry 1BVY
(Sevrioukova et al., 1999) is also shown with the w = 15 colouring scheme. Note again the purple to blue striping. The
lines drawn between residues indicate predicted contacts (correct in green, incorrect in red).
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Figure 2: Trees are a natural representation for program
code. In this trivial example, program fragments of any
size can be built by choosing either a function or terminal
node at each position in the tree. Two examples are given.

order to start evolving code with this Perl-based system, a
small amount of Perl code must be written in the following
three areas:

1. Data input

The training and testing data must be read into suitable
data structures. For each protein in the dataset a series of
four different SDPC matrices are generated with window
sizes w = 1, 5, 9, 15. These 3×L matrices are stored in an
array structure, which is referred to below as @sdpc. Each
training instance must also have a desired or target output
value associated with it: in this case the “real” L × L
contact matrix calculated from the 3D protein structure
coordinates. Here, a contact is defined as two residues
whose carbon-β atoms (or carbon-α in the case of glycine)
are closer than 8Å (in agreement with the CASP, EVA
and Fariselli et al. (2001)).

2. Evolved code specification

The initial GP population will contain random individu-
als whose phenotype is a pair of function definitions. Al-
though these functions are random they should be syntac-
tically correct and should perform the types of operations
required for the problem and not system "rm -rf *", for
example. This is made possible by following type-aware
production rules or a grammar, as shown in Figure 3, to
expand “skeleton” functions similar to the following:

sub pseudo_distance {
my ($i, $j, @sdpc) = @_;
# expand "Num" according to grammar
return Num;

}

An infinite number of functions can be generated in
this way (because their size is unbounded). The gram-
mar produces arithmetic expressions of constants, input
variables ($i, $j, and the contents of @sdpc), and calls to
eucwin(M,$i,$j,R,D). This accessory function returns
the Euclidean distance between two windows (submatri-
ces) in one of the SDPC matrices (M) centred around $i
and $j with radius R (anti-parallel if D is negative). Dur-
ing evolution, the mutation and crossover operators also
obey the grammar, so the functions continue to be valid.

Num ::= Num * Num | Num / Num |
(Num + Num) | (Num - Num) |
abs(Num) | sin(Num) | (Num)**2 |
(Num > {Rconst} ? Num : Num) |
Const | Rconst | Var |
$sdpc[W][Var + Const][Y] |
eucwin($sdpc[W], $i, $j, R, D)

Rconst ::= 0.0154 | 0.8661 | 0.2893 ...
Const ::= -5 | -4 | -3 .. 5
W ::= 0 | 1 | 2 | 3
Y ::= 0 | 1 | 2
R ::= 0 | 1 | 2 .. 5
D ::= 1 | -1
Var ::= $i | $j

Figure 3: Grammar, or production rules, for arithmetic
expressions evolved in this work. It is shown in Backus-
Naur form, with the grammatical categories as capitalised
words (or single capital letters). To generate an expres-
sion, start with Num and replace it with one of the options
(separated by |) on the right hand side of the ::=. If the
result contains a grammatical category, expand this in the
same way. Continue until no more expansions are neces-
sary. Some details, such as bound checking, are omitted
for clarity.

Finally, for each protein in the training (or testing)
set, a wrapper subroutine applies the two evolved func-
tions to the sequence-derived data as outlined above (see
“Overview of approach”) to produce a predicted contact
map. This is then passed to the fitness function.

3. Fitness evaluation

GP, like other evolutionary algorithms, requires a numer-
ical measure of the fitness for the selection phase. The
fitness measure used here is simply the contact prediction
accuracy, which is defined as Nc/Np, where Nc is the num-
ber of predicted contacts which correspond to true con-
tacts in the target matrix, and Np = L/10 (the number
of predictions made). Local contacts, such as those made
in turns and helices are not counted, since the residue
separation cutoff used here is |i− j| ≥ 8.

Evolving contact predictors

Twenty populations of 2000 individuals were run
in parallel to evolve the residue_score() and
pseudo_distance() functions for contact predic-
tion. A standard PerlGP setup was used, including a
tournament selection scheme where 50 individuals are
chosen at random from the population, and the fittest
20 of these replace the least fit 20 individuals with
their offspring. Occasional migration of individuals was
allowed between populations, giving a total effective
population of 40,000 individuals.

The pairwise application of the pseudo_distance()
function is a rather time consuming step, even though
it is only applied to L/5 residues (preselected by
residue_score()). In order to reduce computation time
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Figure 4: GP learning curve, showing mean accuracy and
program size calculated over the 20 parallel populations.
The ≈10,000 completed tournaments are equivalent to
about 100 generations (where each individual in the pop-
ulation is evaluated once).

by a factor of around 4, fitness evaluations are performed
on a random sample of just 100 domains from the train-
ing and testing sets. The subsets are re-sampled every 50
tournaments.

A steady increase in prediction accuracy was seen on
both the training and testing data (see Figure 4) during
just over 80 days of continuous processing. The test set
fitness may have reached its peak value, or it could rise
again – the only way to be sure is to run more tourna-
ments. However, for now the mean contact prediction
accuracy on the test set has reached an impressive 27.5%.
There may be faster ways to reach the same result, of
course. Note however that the actual application of the
method takes just a few seconds in addition to a PSI-
BLAST run. A hand-picked (and favourable) example of
predicted contacts is shown in Figure 1(e).

Performance on validation set

Because sequence profiles from both the training and test-
ing set domains were used to train the SOMs there could
possibly be some over-estimation of the accuracy of the
evolved contact predictors. The (so far untouched) vali-
dation set is therefore used in the analysis which follows.

One representative predictor was selected from the 20
populations totalling 40,000 individuals. Based on the
accuracy over the combined training and testing sets, the
best individual was identified from 50 randomly selected
individuals from population 1. This individual (and no
other) is then evaluated using the validation set. The
results are presented in Table 1, and the behaviour of the
new algorithm is probed by also calculating the accuracy
on various subsets of the validation set.

The mean contact prediction accuracy over the en-
tire validation set is 27.1% (using a minimum sequence
separation of 8 residues, which is assumed unless other-
wise stated). The SCOP class with the highest accuracy
(39.2%) is “Small proteins”. This class contains many
non-standard proteins and peptides, such as snake and
spider toxins. Another non-standard class, the “Mem-

Table 1: Mean contact prediction accuracy (percent cor-
rect) on the validation set. For each protein domain of
length L, L/10 predictions are made.

min. separation
Validation subset n 8 16 24
Full set 156 27.1 24.6 20.6
SCOP class
all-α 30 19.9 17.9 15.3
all-β 35 30.5 24.7 20.2
α + β 40 25.9 24.2 21.2
α/β 18 31.5 36.7 34.9
Membrane assoc. 8 0.1 0.1 0.1
Multi-domain 4 23.5 18.6 18.4
Small proteins 21 39.2 32.9 22.0
α + β or α/β 58 27.6 28.1 25.4
Containing β 97 28.5 26.5 23.3
No Small or Membrane 127 26.5 24.5 21.4
Domain length, L
0 < L ≤ 50 15 34.4 22.2 13.3
50 < L ≤ 100 51 30.7 30.3 25.4
100 < L ≤ 200 53 23.7 21.3 18.5
200 < L ≤ 400 37 24.2 22.4 20.0
50 < L ≤ 400 141 26.4 24.8 21.4
Number of PSI-BLAST homologues
≥ 15 140 27.3 25.5 21.3
≥ 50 108 29.4 27.7 22.9
≥ 100 78 29.8 27.8 23.5

brane and cell surface proteins and peptides”, is predicted
very poorly. The sequence/structure environments in
these proteins are very different from water-soluble glob-
ular proteins, so the poor performance is not surprising.
Contacts in the remaining 127 “standard globular pro-
teins” are predicted with 26.5% accuracy (“No Small or
Membrane” in Table 1).

In terms of secondary structural content, it seems that
β-sheet containing domains are predicted best, with the
highest accuracies calculated for all-β (30.5%) and mixed
α/β (31.5%). However, one should be cautious because
the number of domains is quite low, and t-tests generally
fail to show significant differences between classes. Even
if all β-containing classes are pooled and compared to
all-α domains (28.5% vs. 19.9%), the difference is not
(quite) significant at the 5% level. On the larger sample of
the training and testing domains, this difference is clearly
significant, however.

Accuracy appears to take a downward trend with in-
creasing domain length, particularly above 100 residues.
The largest 37 domains in the validation set are still pre-
dicted with a reasonable 24.2% accuracy, however.

At least two previous studies (Fariselli et al., 2001; Zhao
and Karypis, 2003) have used datasets constructed with
the requirement that each protein should have at least 15
protein family members for sequence profile generation.
Here, no such limitation has been imposed, and when the
number of homologues is taken into account during post-
analysis (see Table 1), no large difference is seen when
using a threshold of 15 family members. However, a rea-
sonable increase (around 2%) is seen when 50 or more
family members are required, and the incidence of do-
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Table 2: Mean percent accuracy for 15 “sequence-unique”
CASP5 targets at three coverage levels with residue sep-
aration ≥ 24.

number of pairs predicted
Method L/10 L/5 L/2
Bystroffa 19 16 12
CMAPprob 16 14 13
CORNETc 21 18 13
This workd 27 21 14

a Shao and Bystroff (2003)
b Pollastri and Baldi (2002)
c Fariselli et al. (2001)
d using a “frozen” sequence database contemporary to CASP5

mains with zero correctly predicted contacts appears to
correlate inversely with the number of homologues (data
not shown).

Retrospective performance on CASP5 tar-
gets

The data presented above cannot be easily compared
with data from other groups because dataset construc-
tion and/or performance measures may differ. The CASP
meetings (Lattman, 1995) and the continuous benchmark-
ing experiment EVA (Eyrich et al., 2001) provide better
conditions for direct comparison. The EVA team evalu-
ated contact prediction servers at CASP5 and found accu-
racies between 12 and 15% for 2L predictions (see Figure
3 of Eyrich et al. (2003)). The authors kindly provided
additional accuracy data (O. Graña, personal communi-
cation) for coverage levels L/10, L/5 and L/2. These
are presented in Table 2 together with accuracies for the
newly developed method on the same 15 targets with iden-
tical evaluation criteria. Although the sets are small, the
higher accuracy with the new method is encouraging, par-
ticularly at lower coverage levels. Continuous evaluation
at EVA has started, and in time will provide enough data
for a more robust comparison.

Discussion

The coverage issue complicates the comparison of perfor-
mance of this new method with others, which have largely
been optimised for L/2 coverage. This method has been
optimised for L/10 contacts, but it can also be evaluated
using L/2 contacts. Using approximately the same cri-
teria as Fariselli et al. (2001) (L/2 predictions, 8 residue
separation, subset of validation set with > 15 homologues)
the accuracy of this new approach is 19%. This compares
to the published 21% of Fariselli et al., who used a neu-
ral network to classify contacts/non-contacts based on the
following input information: profiles (3-residue window),
correlated mutations, sequence conservation, |i − j|, and
predicted secondary structure. The retrospective analysis
on CASP5 targets presented above ranks these two meth-
ods in the opposite order. Therefore, the new method is
competitive with (and perhaps better than) established
techniques at lower coverage levels, and yet it uses only

sequence profile information and |i− j|. The explanation
seems to be that larger window sizes are used in this work.
Why have others not used larger windows? In fact, some
time ago Lund et al. (1997) found that windows of 18
residues were most effective for contact prediction. More
recently, large profile windows may have been avoided be-
cause they introduce too many parameters into machine
learning algorithms. Here the SOM has successfully re-
duced the amount of information to a manageable num-
ber of states. While secondary structure predictions also
concisely summarise profile windows and are widely used
in contact prediction (Fariselli et al., 2001; Pollastri and
Baldi, 2002; Zhao and Karypis, 2003, for example), they
are too coarse (usually just 3 states) to be used in isola-
tion. It is interesting to note some convergence with the
recent work of Shao and Bystroff (2003), where a finer
subdivision of structural states (“I-sites” predicted super-
secondary fragments) has been used in a statistics-based
contact predictor.

A number of improvements to the current SOM- and
GP-based approach can and should be made in the near
future. For example, sequence conservation and corre-
lated mutation information are not yet used, and intel-
ligent post-processing (Fariselli et al., 2001; Shao and
Bystroff, 2003) of predicted contact maps should also
improve accuracy. More traditional statistical and ma-
chine learning approaches may also benefit from the SOM-
processed profile information.

Does this study throw more light on the construction of
protein folds? Strand pairing has been studied extensively
(Hutchinson et al., 1998; Zhu and Braun, 1999; Mandel-
Gutfreund et al., 2001; Steward and Thornton, 2002),
however this study is the first to introduce a method for
visualising local window-based sequence environments in
3D. With the SOM-derived colour schemes it becomes
clear, particularly for parallel sheets, that there is often a
synchronised transition of environments from the N to C-
terminus of each strand. It is not yet clear if there is a link
between these observations and protein folding, stability
and evolution.
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