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Abstract. An open source Perl package for genetic programming, called
PerlGP, is presented. The supplied algorithm is strongly typed tree-based
GP with homologous crossover. User-defined grammars allow any valid
Perl to be evolved, including object oriented code and parameters of
the PerlGP system itself. Time trials indicate that PerlGP is around
10 times slower than a C based system on a numerical problem, but
this is compensated by the speed and ease of implementing new prob-
lems, particularly string-based ones. The effect of per-node, fixed and
self-adapting crossover and mutation rates on code growth and fitness is
studied. On a pi estimation problem, self-adapting rates give both opti-
mal and compact solutions. The source code and manual can be found
at http://perlgp.org

1 Introduction

Many packages for genetic programming (GP) are now freely available on the
Internet. For example, the C package lilgp[10], the ECJ[5] Java system, and the
Open BEAGLE framework[2] in C++. Many other languages are also repre-
sented but Perl is conspicuously absent, except for two proof-of-concept imple-
mentations[6, 9] which are not intended for general use. Perl is seen by many as
just a quick-and-dirty tool for hacking together web interfaces or backup scripts.
It has its origins in these areas but is now a mature language, with modularisation
and object orientation. Speed of execution is not Perl’s strong point since it is
(usually) interpreted, however when intensive numerical computation is needed,
C-coded extensions often exist to take care of it (such as the PDL extension
[http://pdl.perl.org]). Perl allows fast project development and prototyping and
it has a number of built-in features which make it easy to implement tree-based
GP. These include hash tables, powerful string manipulation and run-time eval-
uation. Here I introduce perhaps the first major open source GP system written
in Perl, called PerlGP. This paper intends to give a full introduction to the sys-
tem, explain some of the design decisions and show examples of use as part of
some brief analyses of execution speed, bloat and meta-evolution.



2 Implementation

The following sections describe how the PerlGP system is put together. Many
features of the system are inspired from Nature or the literature. Unfortunately
space limitations prevent proper attribution for all of them here.

2.1 Object-Oriented Design

There are three main object types: Individual, Population and Algorithm.
The user provides the implementation for a few key methods (for example
the fitness function, data input/output) in these classes and specifies the base
classes from which they should inherit. The base classes, such as TournamentGP
(Algorithm) and GeneticProgram (Individual) take care of the rest. Other
search strategies and representations can be added to the package, and it should
be trivial to swap them in and out as required using inheritance.

The Individual is the most important object, it is the genetic program.
Each instance has a tree-represented genome and can convert it into Perl code
for evaluation. The object also knows how to perform mutations, crossovers
and saving to disk. Population is a container class for individuals, and does
little except provide a method for picking random individuals, and methods
for migration between populations, via disk. The Algorithm class is concerned
with manipulating a population; selecting individuals, feeding them input data,
collecting the output, and calculating fitnesses.

2.2 Tree-as-Hash-Table Genotype Representation

Hash tables, also known as associative arrays, can be hijacked to encode string-
based tree structures as explained in Figure 1. The keys in the genome hash-tree
follow the syntax: nodeTYPExx, where TYPE is replaced by an all-capitals string
describing the type of the node (see Section 2.3), and xx is a unique identifier
(for there may be many nodes of the same type).

2.3 Grammar Specification

PerlGP is a strongly typed system. In fact, all evolved code must be syntacti-
cally correct to be awarded fitness. When random individuals or subtrees are
generated, PerlGP follows a grammar (defined by the user). The format of this
grammar is analogous to the tree-as-hash encoding described above, and is ex-
plained in Figure 2.

2.4 Random Initialisation of Programs

A random tree is generated simply by starting with a new node of type ROOT,
picking a random element from the array stored in $F{ROOT}, creating new nodes
wherever {TYPE} is seen. This is illustrated in Figure 3.



$tree{nodeS0} = ’One day in {nodeS1}.’;

$tree{nodeS1} = ’{nodeS2} {nodeS3}’;

$tree{nodeS2} = ’late’;

$tree{nodeS3} = ’August’;

$string = $tree{nodeS0};

do { print "$string\n" } while ($string =~ s/{(\w+)}/$tree{$1}/);

# outputs the following:

One day in {nodeS1}.

One day in {nodeS2} {nodeS3}.

One day in late {nodeS3}.

One day in late August.

Fig. 1. Tree-as-hash-table explanation. In Perl, the syntax $one{two} = ’three’

means that in a hash table named ‘one’, the value ‘three’ is stored for the key ‘two’.
The iterated search-and-replace (s/patt/repl/) looks for hash keys contained within
curly braces and replaces them with the contents of the hash.

Tree termination and size control can be achieved in three ways. The author
prefers to construct the Grammar with biased frequencies of branching and non-
branching functions so that trees terminate naturally.

Whereas the following grammar definition tends to produce very deep trees:
$F{STRING} = [’{STRING}, {STRING}’,’{WORD}’];,

this modification produces more reasonably sized trees:
$F{STRING} = [’{STRING}, {STRING}’,’{WORD}’,’{WORD}’,’{WORD}’];

because the WORD type is non-branching and only terminals are defined for it.
Alternatively or additionally, maximum and minimum tree sizes (number

of nodes) can be imposed, along with an early termination probability and a
maximum tree depth limit.

2.5 Persistence of GP Individuals

The standard library for Perl contains many useful things, including the “DBM”
modules. These provide a simple interface for storing key-value pairs on disk with
fast indexed access. Their use is extremely simple: using tie(), a normal Perl
hash-table is linked to a file, and every change made to the hash is also made
to the file. Using tie(), the genome hash of every individual is transparently
mirrored on disk. This is useful if the user wants to use populations that are
too large to fit into RAM. It also provides continuous checkpointing, allows the
population to be sampled/examined by another program during the run.

2.6 Code/Fitness Evaluation

Every object of type Individual has to implement the method evaluateOutput().
This method takes as input the training data and produces some kind of output



$F{ROOT} = [ ’{STATEMENT}’ ];

$T{ROOT} = [ ’# nothing’ ];

$F{STATEMENT} = [ ’print "{STRING}!\n";’,

’$s = "{WORD}"’,

’{STATEMENT} {STATEMENT}’ ];

$T{STATEMENT} = [ ’# just a comment’,

’chomp($s);’,];

$F{STRING} = [ ’{STRING}, {STRING}’,

’{WORD}’ ];

$T{STRING} = $T{WORD} = [ ’donuts’,

’mmm’,

’$s’ ];

Fig. 2. Grammar specification as a pair of hashes, %F for functions and %T for terminals.
The keys in the hashes are the user-defined node types (i.e. data types). Node types
must be in capital letters only. The values are anonymous arrays containing the possible
expansions for that type. When another function or terminal is needed, it is signalled
by a node type in curly braces. The ROOT node type must always be defined. Function
definitions are optional (in this example there is no function of type WORD) but terminals
must be defined for every type.

1 $genome{nodeROOT0} = ’{nodeSTATEMENT0}’;

2 $genome{nodeSTATEMENT0} = ’{nodeSTATEMENT1} {nodeSTATEMENT2}’;

3 $genome{nodeSTATEMENT1} = ’$s = "{nodeWORD0}";’;

4 $genome{nodeSTATEMENT2} = ’print "{nodeSTRING0}!\n";’;

5 $genome{nodeSTRING0} = ’{nodeSTRING1}, {nodeSTRING2}’;

6 $genome{nodeSTRING1} = ’{nodeWORD1}’;

7 $genome{nodeSTRING2} = ’{nodeWORD2}’;

8 $genome{nodeWORD0} = ’donuts’;

9 $genome{nodeWORD1} = ’mmm’;

10 $genome{nodeWORD2} = ’$s’;

Fig. 3. To make a new tree: start with a ROOT node, assign a new genome key nodeROOT0

and pick one of the available ROOT type functions from the grammar (see Figure 2). In
this case there is only one choice (line 1). The contents of the new node require a new
STATEMENT type node to be created, and a random function of that type is chosen (line
2). Now there are two child nodes to be expanded (lines 3 and 4). The process continues
recursively along all branches and when a function can not be found, a terminal node
is used instead.



data structure that the fitness function (in Algorithm) can understand. The user
can either provide an evolved evaluateOutput() method (the definition for this
method is usually in the ROOT node of the tree), or some function or method
which is called from a non-evolved evaluateOutput().

When the fitness of an individual is required (and is not cached in memory),
the genome is expanded into code which is evaluated with Perl’s eval() func-
tion. This redefines evaluateOutput() and/or other methods - overwriting any
previously defined methods (from the last individual’s fitness evaluation, for ex-
ample). Normally Perl would emit warnings about this, but these are suppressed.
Then, evaluateOutput() is called and the fitness is calculated from the return
value. The fitness is stored both in memory and on disk (in the genome hash),
to avoid unnecessary recalculation and allow faster restarts.

3 Genetic Algorithm Design

3.1 The Genetic Algorithm

The first release of this software provides an Algorithm superclass implementing
tournament-based GP, which is a good starting point for developing biologically
realistic algorithms (at least with respect to higher organisms). Each tourna-
ment involves the random selection of a group of individuals which are sorted by
decreasing fitness. Individuals which have participated in more than a certain
number of tournaments are automatically given the worst possible fitness, to sim-
ulate the natural ageing process. Then, the first parent is taken from the top of
the list, and a mate is selected either from the next in line, or a random selection
biased towards the top of the list (the user decides which strategy). Crossover
(see Section 3.2) is performed on these two parents to create two offspring which
replace individuals at the bottom of the sorted list. Each offspring is subjected to
mutation (see Section 3.3) before being placed back in the population. Mutation
is only applied after reproduction because in biology, the only relevant muta-
tions are those that occur in the germ-line. If desired, more pairs of parents are
chosen from the same sorted list and are crossed over as before. As a somewhat
crude anti-stagnation measure, two parents may only produce offspring if their
fitnesses are not identical, otherwise the second parent is mutated.

3.2 “Homologous” Crossover

When trying to draw inspiration from biology, the crossover mechanism should
perhaps deserve the most attention. In PerlGP, by default, the number of
crossovers per reproduction event is variable and depends on the number of
nodes in the tree (this is called a uniform, or per-node crossover rate). When no
crossover is performed, parents are simply copied into the offspring. This design
decision is discussed in more detail in Section 4.2.

Another biology-based decision was to attempt “homologous” crossover:
where crossover points are biased to give subtrees of similar size and contents.



This is achieved, crudely, by randomly sampling two subtrees, A and B, from
each parent respectively, until a pair is accepted as a crossover point with the
probability:

(
1−

(
|NA −NB |

max(NA, NB)

)s)
.

(
IA,B

min(NA, NB)

)h

,

where N is the number of nodes in a subtree, and I is simply the number of
identical nodes seen during the parallel descent of two subtrees (stopping at
non-identical nodes and not allowing for insertions or deletions). This contrasts
with Langdon’s approach[4] which looks towards the root of the tree for similar
contexts. The exponents s and h (which default to 1) can be changed to give
more or less emphasis on size and “homology” respectively.

Crossover is only allowed between nodes of the same type and the subtree
sampling may be biased to give larger subtrees than random sampling would
normally give. When multiple crossover points are required, subsequent points
are not allowed to lie within in the subtrees of previous crossover points.

3.3 Mutation Operators

As with crossover, the default behaviour of PerlGP is to apply a random number
of mutations proportional to the number of nodes in the tree. The two main types
of mutation are point mutation and macromutation, and the choice between them
is random (with a user-defined bias). Point mutations involve picking a random
node (internal or terminal) and picking a new function (of the same arity) or
terminal from the grammar. In some cases, the replacement function or terminal
will be identical to the original, so there is an option to repeat the process until
some change is made (switched off by default). Numeric terminal nodes can be
treated specially so that point mutations make a random adjustment to the
number instead of replacing it - this is called numeric mutation.

Macromutation is a little more complex. Nodes are (optionally) biased to-
wards internal nodes, and the following operations are chosen from at random:

Replace subtree Subtree replaced with a random subtree.
Copy subtree Two independent nodes (subtrees not containing each other)

are selected and one subtree is copied, replacing the other.
Swap subtrees As above, but subtrees are swapped.
Insert internal A node is chosen, (e.g. a terminal node: 2) and is replaced with

a non-terminal node (e.g. {NUM} + {NUM}). One of branches is linked back
to the original node, and any remaining branches are expanded with new
subtrees (e.g. result: 1 + 2).

Delete internal Two nodes are chosen, the second belongs to the subtree of the
first and is of the same type. The nodes are reconnected, and any intervening
nodes are removed from the tree.



4 Benchmarking

4.1 Speed Comparison with lilgp

A popular open source GP package is lilgp[10] which, being quite minimal and
written in C, is presumably one of of the fastest GP systems available (exclud-
ing machine-code systems of course). To get a feeling for how much slower a
Perl-based system executes compared to a system in a “proper” language, both
PerlGP and lilgp were challenged with symbolic regression of a sine curve. The
aim was to use identical training data, function sets, and fitness functions, but
allow each each system to use its “default” algorithm to reach a certain fitness
in a fixed time. The main reason behind this decision was to avoid a major of
overhaul of PerlGP to make carbon-copy lilgp emulation possible, when we know
the Perl system is going to be slower anyway. The experimental setup is outlined
in Table 1, and a summary of the results is given in Table 2.

lilgp PerlGP

target function y = sin(3x) for −1 < x < 1

training data 100 points

fitness function 1/(1 +
∑

|ycorrect − ygp|)
success criteria fitness >= 0.4 (fit looks good) within 4 hours

functions + − ∗ pdiv(a, b) (returns a if b = 0)

terminals ephemeral random constants
0 → 1

1000 random numbers 0 → 1

tree limits init.method = half-and-half
init.depth = 2-6
max depth = 8
max nodes = unlimited

naturally terminating trees
max depth = 20 (safety)
max nodes = 1000 (safety)
rebuild trees < 20 nodes

population size 4000 2000

max. generations 5000 no limit

genetic algorithm generational, fitness based
selection, 90% crossover, 5%
reproduction, 5% “keep
trying” mutation

tournaments of 50
individuals, reproduce top 20,
age limit: 4 tournaments

Table 1. Summary of settings for lilgp and PerlGP systems in the time trials.

The main conclusion is that lilgp manages to complete more runs within a
fixed time period than PerlGP. When considering only the runs which reach the
desired fitness, PerlGP takes about 3.5 times longer. It would be desirable to let
all runs terminate naturally, but this was not feasible for a number of reasons;
one being that an optimal solution cannot be guaranteed, another being that
17 if the lilgp runs behaved strangely and converged to a population of small
unfit individuals. However, one can guestimate that PerlGP would be around 10
times slower than lilgp if all runs did terminate (this often quoted as a Perl-to-C
speed differential).



GP system total runs successful
runs in 4h

mean time
(min)

mean tree
size (nodes)

lilgp 100 70 24 120

PerlGP 100 55 82 83

Table 2. Speed comparison of PerlGP and lilgp. The mean time and tree sizes are
calculated for successful runs only (achieving fitness of 0.4 in less than 4h).

PerlGP gives more compact solutions (more on this in Section 4.2). For the
interested reader, one such solution is given here (slightly simplified from the
evolved code):

sin(3x) ≈ 1.42291(0.57915− x2)
0.38103/x + 0.32766x

+ x for − 1 < x < 1 .

4.2 Mutation and Crossover Strategies

In biology, mutations result from uncorrected replication errors or by the action
of mutagens such as radiation, chemicals, free radicals, viruses and transposable
elements[1]. The number of mutation events occurring depends on the amount
of DNA for most types of mutation. And while crossover points appear to be
non-uniformly distributed in eukaryotic chromosomes, their numbers too are cor-
related with chromosome size[3]. Therefore PerlGP, which tries to be biologically
inspired, applies mutations and crossovers with probabilities depending on the
genome size (as default behaviour). Others have studied this approach and found
that it (in contrast to the standard approach with fixed numbers of mutation and
crossover) is an effective measure to protect against bloat[7, 8]. Bloat is the rapid
increase in size of GP individuals without a corresponding increase in fitness. It
is thought that larger GP individuals can “soak up” mutations and destructive
crossovers and therefore are more likely to produce viable offspring. The counter
argument is that uniform mutation and crossover are simply another form of
parsimony pressure, penalising larger individuals. Here I ask the question, can a
regime of uniform mutation and crossover allow code growth when the solution
to the problem demands it?

The problem is a simple one: to find an integer arithmetic approximation
of pi. The functions and terminals are + - * pdiv 1 2 3 5 7, and the fitness
function is the absolute error. Clearly, a more accurate solution will contain
more terms, so the code tree will have to be bigger. Initially, two types of run
were performed: one with per-node mutation/crossover rates of 1/102 and 1/34
respectively, and one with a single fixed mutation and crossover occurring with
3/10 and 9/10 probability (recall that mutation is applied to each offspring after
crossover). The ratio of crossover to mutation in both cases is 3:1 and the rates
were chosen to give similar amounts of actual mutation and crossover in the
first few hundred tournaments of a run. Runs were terminated after 90 minutes
and the final fitness vs. solution size from 50 runs of each type is shown in



Figure 4. It was not surprising to see that the fixed-mutation runs produced
larger solutions, however the increased size was also accompanied by increased
fitness. In this case, the size increase did not seem to be detrimental to learning
(by slowing down evaluations or tree manipulation, for example). Indeed, many
of the runs were well on their way to the best possible fitness (1e-15). In the
other experiment, the high per-node mutation rate is slowing down learning by
limiting code growth, but these runs would eventually find optimal solutions
(data not shown).
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Fig. 4. End-of-run fitness on the pi approximation problem with different mutation
and crossover regimes.

Out of curiosity, a third type of run was performed using self-adapting mu-
tation and crossover probabilities. Meta-evolution is simple to implement in
PerlGP - the user simply creates evolved code for the evolvedInit() method,
which is called before fitness evaluation, mutation and crossover. In this function,
the per-node mutation and crossover probabilities are redefined, and these values
are allowed to change by numeric mutation only. The results on the pi problem
(also shown in Figure 4) were surprising. The distribution of fitnesses in these
runs was indistinguishable from the fixed-mutation/crossover runs (two-sample
t-test on logged or unlogged errors gives d < 1.96), but the solution trees were
significantly smaller (d = 8.7).

Meta-evolution of parameters has not yet been fully explored in the PerlGP
system. The pi problem has a fitness landscape where improvements are always
possible. In flatter or more complex fitness landscapes, self-adapting mutation
and crossover rates may converge towards zero because increases in fitness are
so rare that conservatism is the most rewarding strategy, in terms of survival.



5 Conclusion

PerlGP is a robust and flexible tool which has already been applied in my group
to a variety of string and number based projects, including protein secondary
structure prediction and time-series modelling of medical data. New projects
can be started quickly without the need to provide code for the functions and
terminals that Perl already has. Object oriented code can also be evolved, along
with self-adapting parameters and genetic operators. Results suggest that self-
adapting uniform mutation and crossover rates may be the answer to the bloat
problem. Open source status will ensure that the project evolves in response to
the demands of the community. The project’s homepage is http://perlgp.org.
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