 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O00268 from www.uniprot.org...
The NucPred score for your sequence is 0.79 (see score help below)
1 MAAGSDLLDEVFFNSEVDEKVVSDLVGSLESQLAASAAHHHHLAPRTPEV 50
51 RAAAAGALGNHVVSGSPAGAAGAGPAAPAEGAPGAAPEPPPAGRARPGGG 100
101 GPQRPGPPSPRRPLVPAGPAPPAAKLRPPPEGSAGSCAPVPAAAAVAAGP 150
151 EPAPAGPAKPAGPAALAARAGPGPGPGPGPGPGPGPGKPAGPGAAQTLNG 200
201 SAALLNSHHAAAPAVSLVNNGPAALLPLPKPAAPGTVIQTPPFVGAAAPP 250
251 APAAPSPPAAPAPAAPAAAPPPPPPAPATLARPPGHPAGPPTAAPAVPPP 300
301 AAAQNGGSAGAAPAPAPAAGGPAGVSGQPGPGAAAAAPAPGVKAESPKRV 350
351 VQAAPPAAQTLAASGPASTAASMVIGPTMQGALPSPAAVPPPAPGTPTGL 400
401 PKGAAGAVTQSLSRTPTATTSGIRATLTPTVLAPRLPQPPQNPTNIQNFQ 450
451 LPPGMVLVRSENGQLLMIPQQALAQMQAQAHAQPQTTMAPRPATPTSAPP 500
501 VQISTVQAPGTPIIARQVTPTTIIKQVSQAQTTVQPSATLQRSPGVQPQL 550
551 VLGGAAQTASLGTATAVQTGTPQRTVPGATTTSSAATETMENVKKCKNFL 600
601 STLIKLASSGKQSTETAANVKELVQNLLDGKIEAEDFTSRLYRELNSSPQ 650
651 PYLVPFLKRSLPALRQLTPDSAAFIQQSQQQPPPPTSQATTALTAVVLSS 700
701 SVQRTAGKTAATVTSALQPPVLSLTQPTQVGVGKQGQPTPLVIQQPPKPG 750
751 ALIRPPQVTLTQTPMVALRQPHNRIMLTTPQQIQLNPLQPVPVVKPAVLP 800
801 GTKALSAVSAQAAAAQKNKLKEPGGGSFRDDDDINDVASMAGVNLSEESA 850
851 RILATNSELVGTLTRSCKDETFLLQAPLQRRILEIGKKHGITELHPDVVS 900
901 YVSHATQQRLQNLVEKISETAQQKNFSYKDDDRYEQASDVRAQLKFFEQL 950
951 DQIEKQRKDEQEREILMRAAKSRSRQEDPEQLRLKQKAKEMQQQELAQMR 1000
1001 QRDANLTALAAIGPRKKRKVDCPGPGSGAEGSGPGSVVPGSSGVGTPRQF 1050
1051 TRQRITRVNLRDLIFCLENERETSHSLLLYKAFLK 1085
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.