SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O00443 from www.uniprot.org...

The NucPred score for your sequence is 0.95 (see score help below)

   1  MAQISSNSGFKECPSSHPEPTRAKDVDKEEALQMEAEALAKLQKDRQVTD    50
51 NQRGFELSSSTRKKAQVYNKQDYDLMVFPESDSQKRALDIDVEKLTQAEL 100
101 EKLLLDDSFETKKTPVLPVTPILSPSFSAQLYFRPTIQRGQWPPGLPGPS 150
151 TYALPSIYPSTYSKQAAFQNGFNPRMPTFPSTEPIYLSLPGQSPYFSYPL 200
201 TPATPFHPQGSLPIYRPVVSTDMAKLFDKIASTSEFLKNGKARTDLEITD 250
251 SKVSNLQVSPKSEDISKFDWLDLDPLSKPKVDNVEVLDHEEEKNVSSLLA 300
301 KDPWDAVLLEERSTANCHLERKVNGKSLSVATVTRSQSLNIRTTQLAKAQ 350
351 GHISQKDPNGTSSLPTGSSLLQEVEVQNEEMAAFCRSITKLKTKFPYTNH 400
401 RTNPGYLLSPVTAQRNICGENASVKVSIDIEGFQLPVTFTCDVSSTVEII 450
451 IMQALCWVHDDLNQVDVGSYVLKVCGQEEVLQNNHCLGSHEHIQNCRKWD 500
501 TEIRLQLLTFSAMCQNLARTAEDDETPVDLNKHLYQIEKPCKEAMTRHPV 550
551 EELLDSYHNQVELALQIENQHRAVDQVIKAVRKICSALDGVETLAITESV 600
601 KKLKRAVNLPRSKTADVTSLFGGEDTSRSSTRGSLNPENPVQVSINQLTA 650
651 AIYDLLRLHANSGRSPTDCAQSSKSVKEAWTTTEQLQFTIFAAHGISSNW 700
701 VSNYEKYYLICSLSHNGKDLFKPIQSKKVGTYKNFFYLIKWDELIIFPIQ 750
751 ISQLPLESVLHLTLFGILNQSSGSSPDSNKQRKGPEALGKVSLPLFDFKR 800
801 FLTCGTKLLYLWTSSHTNSVPGTVTKKGYVMERIVLQVDFPSPAFDIIYT 850
851 TPQVDRSIIQQHNLETLENDIKGKLLDILHKDSSLGLSKEDKAFLWEKRY 900
901 YCFKHPNCLPKILASAPNWKWVNLAKTYSLLHQWPALYPLIALELLDSKF 950
951 ADQEVRSLAVTWIEAISDDELTDLLPQFVQALKYEIYLNSSLVQFLLSRA 1000
1001 LGNIQIAHNLYWLLKDALHDVQFSTRYEHVLGALLSVGGKRLREELLKQT 1050
1051 KLVQLLGGVAEKVRQASGSARQVVLQRSMERVQSFFQKNKCRLPLKPSLV 1100
1101 AKELNIKSCSFFSSNAVPLKVTMVNADPMGEEINVMFKVGEDLRQDMLAL 1150
1151 QMIKIMDKIWLKEGLDLRMVIFKCLSTGRDRGMVELVPASDTLRKIQVEY 1200
1201 GVTGSFKDKPLAEWLRKYNPSEEEYEKASENFIYSCAGCCVATYVLGICD 1250
1251 RHNDNIMLRSTGHMFHIDFGKFLGHAQMFGSFKRDRAPFVLTSDMAYVIN 1300
1301 GGEKPTIRFQLFVDLCCQAYNLIRKQTNLFLNLLSLMIPSGLPELTSIQD 1350
1351 LKYVRDALQPQTTDAEATIFFTRLIESSLGSIATKFNFFIHNLAQLRFSG 1400
1401 LPSNDEPILSFSPKTYSFRQDGRIKEVSVFTYHKKYNPDKHYIYVVRILR 1450
1451 EGQIEPSFVFRTFDEFQELHNKLSIIFPLWKLPGFPNRMVLGRTHIKDVA 1500
1501 AKRKIELNSYLQSLMNASTDVAECDLVCTFFHPLLRDEKAEGIARSADAG 1550
1551 SFSPTPGQIGGAVKLSISYRNGTLFIMVMHIKDLVTEDGADPNPYVKTYL 1600
1601 LPDNHKTSKRKTKISRKTRNPTFNEMLVYSGYSKETLRQRELQLSVLSAE 1650
1651 SLRENFFLGGVTLPLKDFNLSKETVKWYQLTAATYL 1686

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.