SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O00512 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MHSSNPKVRSSPSGNTQSSPKSKQEVMVRPPTVMSPSGNPQLDSKFSNQG    50
51 KQGGSASQSQPSPCDSKSGGHTPKALPGPGGSMGLKNGAGNGAKGKGKRE 100
101 RSISADSFDQRDPGTPNDDSDIKECNSADHIKSQDSQHTPHSMTPSNATA 150
151 PRSSTPSHGQTTATEPTPAQKTPAKVVYVFSTEMANKAAEAVLKGQVETI 200
201 VSFHIQNISNNKTERSTAPLNTQISALRNDPKPLPQQPPAPANQDQNSSQ 250
251 NTRLQPTPPIPAPAPKPAAPPRPLDRESPGVENKLIPSVGSPASSTPLPP 300
301 DGTGPNSTPNNRAVTPVSQGSNSSSADPKAPPPPPVSSGEPPTLGENPDG 350
351 LSQEQLEHRERSLQTLRDIQRMLFPDEKEFTGAQSGGPQQNPGVLDGPQK 400
401 KPEGPIQAMMAQSQSLGKGPGPRTDVGAPFGPQGHRDVPFSPDEMVPPSM 450
451 NSQSGTIGPDHLDHMTPEQIAWLKLQQEFYEEKRRKQEQVVVQQCSLQDM 500
501 MVHQHGPRGVVRGPPPPYQMTPSEGWAPGGTEPFSDGINMPHSLPPRGMA 550
551 PHPNMPGSQMRLPGFAGMINSEMEGPNVPNPASRPGLSGVSWPDDVPKIP 600
601 DGRNFPPGQGIFSGPGRGERFPNPQGLSEEMFQQQLAEKQLGLPPGMAME 650
651 GIRPSMEMNRMIPGSQRHMEPGNNPIFPRIPVEGPLSPSRGDFPKGIPPQ 700
701 MGPGRELEFGMVPSGMKGDVNLNVNMGSNSQMIPQKMREAGAGPEEMLKL 750
751 RPGGSDMLPAQQKMVPLPFGEHPQQEYGMGPRPFLPMSQGPGSNSGLRNL 800
801 REPIGPDQRTNSRLSHMPPLPLNPSSNPTSLNTAPPVQRGLGRKPLDISV 850
851 AGSQVHSPGINPLKSPTMHQVQSPMLGSPSGNLKSPQTPSQLAGMLAGPA 900
901 AAASIKSPPVLGSAAASPVHLKSPSLPAPSPGWTSSPKPPLQSPGIPPNH 950
951 KAPLTMASPAMLGNVESGGPPPPTASQPASVNIPGSLPSSTPYTMPPEPT 1000
1001 LSQNPLSIMMSRMSKFAMPSSTPLYHDAIKTVASSDDDSPPARSPNLPSM 1050
1051 NNMPGMGINTQNPRISGPNPVVPMPTLSPMGMTQPLSHSNQMPSPNAVGP 1100
1101 NIPPHGVPMGPGLMSHNPIMGHGSQEPPMVPQGRMGFPQGFPPVQSPPQQ 1150
1151 VPFPHNGPSGGQGSFPGGMGFPGEGPLGRPSNLPQSSADAALCKPGGPGG 1200
1201 PDSFTVLGNSMPSVFTDPDLQEVIRPGATGIPEFDLSRIIPSEKPSQTLQ 1250
1251 YFPRGEVPGRKQPQGPGPGFSHMQGMMGEQAPRMGLALPGMGGPGPVGTP 1300
1301 DIPLGTAPSMPGHNPMRPPAFLQQGMMGPHHRMMSPAQSTMPGQPTLMSN 1350
1351 PAAAVGMIPGKDRGPAGLYTHPGPVGSPGMMMSMQGMMGPQQNIMIPPQM 1400
1401 RPRGMAADVGMGGFSQGPGNPGNMMF 1426

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.