 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O01326 from www.uniprot.org...
The NucPred score for your sequence is 0.93 (see score help below)
1 MSDEKISMTLNFPKHKRARRKKYQKEYQERHKEEMMQQLGRRFQNQPSTS 50
51 SAPPDTVEKIPLPTESTSALPFGDSPRLTEKDYETNYMIDPPVVSTHSAE 100
101 LIKSNRVVIKAEEAEKYMMIKAKSTTSKILQDFQTKILETVKTKRRLQAD 150
151 VPYIIHPCHSMKGRKTPKQKGGDESFTASDVSDDSNDSQDEASTSEPTNR 200
201 QAPEADKTGEVKDEKQTCNRRNQQRKAKRLRNFEEKERQITLLKKGIDRK 250
251 KTHPNGIHPDISFNEKGLGNEGPECRCPEPIKTCGLKHGYYAGEDKAIDC 300
301 KKSNGENLHYYTLRVTPLPSENQLYRTHMAINGEEFEFEGFSLITHAPLP 350
351 DCMTRAPICKYSMDYEFQLVEEFMPDECFDPEDCDMLFEYIFHEIFEMLD 400
401 FELRPKHIPSDVESCPMIHIMPRFVQTKDDLVQLWSSKTVLAYFTSKGSS 450
451 EIMSPEDVNRLCDAQIDQFTRNTSKHKQSIVLNTKFKPSAIRADWFERDE 500
501 EKKEVYVVHNAIRAQTYTAISLPRIAFLEKTLNKMIQEKQSSGVYNKDFE 550
551 KTKNELEHLKRENRSARNLKLREPVAGFIETGLKPDVAAHVVMTILACHH 600
601 IRYNFSLDVFEEVIEYKFNDRRVIELALMHSSFKSHYGTPIDHVKNMITN 650
651 CGYRRKYGAEDKREKKRVAGIMSLFNIMKGTSGGEPILHNERLEYLGDAV 700
701 VELIVSHHLYFMLTHHFEGGLATYRTALVQNRNLATLAKNCRIDEMLQYS 750
751 HGADLINVAEFKHALANAFEAVMAAIYLDGGLAPCDVIFSKAMYGHQPVL 800
801 KEKWDHINEHELKREDPQGDRDLSFITPTLSTFHALEERLGIQFNNIRLL 850
851 AKAFTRRNIPNNDLTKGHNQRLEWLGDSVLQLIVSDFLYRRFPYHHEGHM 900
901 SLLRTSLVSNQTQAVVCDDLGFTEFVIKAPYKTPELKLKDKADLVEAFIG 950
951 ALYVDRGIEHCRAFIRIVFCPRLKHFIESEKWNDAKSHLQQWCLAMRDPS 1000
1001 SSEPDMPEYRVLGIEGPTNNRIFKIAVYYKGKRLASAAESNVHKAELRVA 1050
1051 ELALANLESMSFSKMKAKNNSWFQNMRRRLEQDTSD 1086
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.