 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O08550 from www.uniprot.org...
The NucPred score for your sequence is 0.94 (see score help below)
1 MAAAAGGGSCPGPGSARGRFPGRPRGSGGGGGRGGRGNGAERVRVALRRG 50
51 GGAAGPGGAEPGEDTALLRLLGLRRGLRRLRRLWAGARVQRGRGRGRGRG 100
101 WGPNRGCMPEEESSDGESEEEEFQGFHSDEDVAPSSLRSALRSQRGRAPR 150
151 GRGRKHKTTPLPPRLADVTPVPPKAPTRKRGEEGTERMVQALTELLRRSQ 200
201 APQPPRSRARAREPSTPRRSRGRPPGRPAGPCRKKQQAVVLAEAAVTIPK 250
251 PEPPPPVVPVKNKAGSWKCKEGPGPGPGTPKRGGQPGRGGRGGRGRGRGG 300
301 LPLMIKFVSKAKKVKMGQLSQELESGQGHGQRGESWQDAPQRKDGDEPER 350
351 GSCRKKQEQKLEEEEEEEEKEGEEKEEKDDNEDNNKQEEEEETERAVAEE 400
401 EAMLAKEKEEAKLPSPPLTPPVPSPPPPLPPPSTSPPPPASPLPPPVSPP 450
451 PPLSPPPYPAPEKQEESPPLVPATCSRKRGRPPLTPSQRAEREAARSGPE 500
501 GTLSPTPNPSTTTGSPLEDSPTVVPKSTTFLKNIRQFIMPVVSARSSRVI 550
551 KTPRRFMDEDPPKPPKVEASIVRPPVATSPPAPQEPVPVSSPPRVPTPPS 600
601 TPVPLPEKRRSILREPTFRWTSLTRELPPPPPAPPPAPSPPPAPATPSRR 650
651 PLLLRAPQFTPSEAHLKIYESVLTPPPLGALETPEPELPPADDSPAEPEP 700
701 RAVGRTNHLSLPRFVPVVTSPVKVEVPPHGAPALSEGQQLQLQQPPQALQ 750
751 TQLLPQALPPQQPQAQPPPSPQHTPPLEKARVASLGSLPLSGVEEKMFSL 800
801 LKRAKVQLFKIDQQQQQKVAASMPLSPAVQTEEAVGTVKQTPDRGCVRSE 850
851 DESMEAKRDRASGPESPLQGPRIKHVCRHAAVALGQARAMVPEDVPRLSA 900
901 LPLRDRQDLATEDTSSASETESVPSRSQREKVESAGPGGDSEPTGSTGAL 950
951 AHTPRRSLPSHHGKKMRMARCGHCRGCLRVQDCGSCVNCLDKPKFGGPNT 1000
1001 KKQCCVYRKCDKIEARKMERLAKKGRTIVKTLLPWDSDESPEASPGPPGP 1050
1051 RRGAGAGGSREEVGATPGPEEQDSLLLQRKSARRCVKQRPSYDVFEDSDD 1100
1101 SEPGGPPAPRRRTPREHELPVLEPEEQSRPRKPTLQPVLQLKARRRLDKD 1150
1151 ALAPGPFASFPNGWTGKQKSPDGVHRVRVDFKEDCDLENVWLMGGLSVLT 1200
1201 SVPGGPPMVCLLCASKGLHELVFCQVCCDPFHPFCLEEAERPSPQHRDTW 1250
1251 CCRRCKFCHVCGRKGRGSKHLLECERCRHAYHPACLGPSYPTRATRRRRH 1300
1301 WICSACVRCKSCGATPGKNWDVEWSGDYSLCPRCTELYEKGNYCPICTRC 1350
1351 YEDNDYESKMMQCAQCDHWVHAKCEGLSDEDYEILSGLPDSVLYTCGPCA 1400
1401 GATQPRWREALSGALQGGLRQVLQGLLSSKVAGPLLLCTQCGQDGKQLHP 1450
1451 GPCDLQAVGKRFEEGLYKSVHSFMEDVVAILMRHSEEGETPERRAGSQMK 1500
1501 GLLLKLLESAFCWFDAHDPKYWRRSTRLPNGVLPNAVLPPSLDHVYAQWR 1550
1551 QQESETPESGQPPGDPSAAFQSKDPAAFSHLDDPRQCALCLKYGDADSKE 1600
1601 AGRLLYIGQNEWTHVNCAIWSAEVFEENDGSLKNVHAAVARGRQMRCELC 1650
1651 LKPGATVGCCLSSCLSNFHFMCARASYCIFQDDKKVFCQKHTDLLDGKEI 1700
1701 VTPDGFDVLRRVYVDFEGINFKRKFLTGLEPDVINVLIGSIRINSLGTLS 1750
1751 DLSDCEGRLFPIGYQCSRLYWSTVDARRRCWYRCRILEYRPWGPREEPVH 1800
1801 LEAAEENQTIVHSPTPSSDTDSLIPGDPVHHSPIQNLDPPLRTDSSNGPP 1850
1851 PTPRSFSGARIKVPNYSPSRRPLGGVSFGPLPSPGSPSSLTHHIPTVGDS 1900
1901 DFPAPPRRSRRPSPLATRPPPSRRTSSPLRTSPQLRVPLSTSVTALTPTS 1950
1951 GELAPPDLAPSPLPPSEDLGPDFEDMEVVSGLSAADLDFAASLLGTEPFQ 2000
2001 EEIVAAGAVGSSQGGPGDSSEEEASPTTHYVHFPVTVVSGPALAPSSLAG 2050
2051 APRIEQLDGVDDGTDSEAEAVQQPRGQGTPPSGPGVGRGGVLGAAGDRAQ 2100
2101 PPEDLPSEIVDFVLKNLGGPGEGAAGPREDSLPSAPPLANGSQPPQSLST 2150
2151 SPADPTRTFAWLPGAPGVRVLSLGPAPEPPKPATSKIILVNKLGQVFVKM 2200
2201 AGEGEPVAPPVKQPPLPPIIPPTAPTSWTLPPGPLLSVLPVVGVGVVRPA 2250
2251 PPPPPPPLTLVFSSGPPSPPRQAIRVKRVSTFSGRSPPVPPPNKTPRLDE 2300
2301 DGESLEDAHHVPGISGSGFSRVRMKTPTVRGVLDLNNPGEQPEEESPGRP 2350
2351 QDRCPLLPLAEAPSQALDGSSDLLFESQWHHYSAGEASSSEEEPPSPEDK 2400
2401 ENQVPKRVGPHLRFEISSDDGFSVEAESLEVAWRTLIEKVQEARGHARLR 2450
2451 HLSFSGMSGARLLGIHHDAVIFLAEQLPGAQRCQHYKFRYHQQGEGQEEP 2500
2501 PLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGATCDEEEDEVQLRST 2550
2551 RRATSLELPMAMRFRHLKKTSKEAVGVYRSAIHGRGLFCKRNIDAGEMVI 2600
2601 EYSGIVIRSVLTDKREKFYDGKGIGCYMFRMDDFDVVDATMHGNAARFIN 2650
2651 HSCEPNCFSRVIHVEGQKHIVIFALRRILRGEELTYDYKFPIEDASNKLP 2700
2701 CNCGAKRCRRFLN 2713
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.