 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O08710 from www.uniprot.org...
The NucPred score for your sequence is 0.69 (see score help below)
1 MTALVLWVSTLLSSVCLVAANIFEYQVDAQPLRPCELQREKAFLKQAEYV 50
51 PQCSEDGSFQTVQCQNDGQSCWCVDSDGREVPGSRQLGRPTVCLSFCQLH 100
101 KQRILLGSYINSTDALYLPQCQDSGNYAPVQCDLQRVQCWCVDTEGMEVY 150
151 GTRQQGRPTRCPRSCEIRNRRLLHGVGDRSPPQCTADGEFMPVQCKFVNT 200
201 TDMMIFDLIHNYNRFPDAFVTFSSFRGRFPEVSGYCYCADSQGRELAETG 250
251 LELLLDEIYDTIFAGLDQASTFTQSTMYRILQRRFLAIQLVISGRFRCPT 300
301 KCEVEQFAATRFGHSYIPRCHRDGHYQTVQCQTEGMCWCVDAQGREVPGT 350
351 RQQGQPPSCAADQSCALERQQALSRFYFETPDYFSPQDLLSSEDRLAPVS 400
401 GVRSDTSCPPRIKELFVDSGLLRSIAVEHYQRLSESRSLLREAIRAVFPS 450
451 RELAGLALQFTTNPKRLQQNLFGGTFLANAAQFNLSGALGTRSTFNFSQF 500
501 FQQFGLPGFLNRDRVTTLAKLLPVRLDSSSTPETLRVSEKTVAMNKRVVG 550
551 NFGFKVNLQENQDALKFLVSLLELPEFLVFLQRAVSVPEDIARDLGDVME 600
601 MVFSAQACKQMPGKFFVPSCTAGGSYEDIQCYAGECWCVDSRGKELDGSR 650
651 VRGGRPRCPTKCEKQRAQMQSLASAQPAGSSFFVPTCTREGYFLPVQCFN 700
701 SECYCVDTEGQVIPGTQSTVGEAKQCPSVCQLQAEQAFLGVVGVLLSNSS 750
751 MVPSISNVYIPQCSASGQWRHVQCDGPHEQVFEWYERWKTQNGDGQELTP 800
801 AALLMKIVSYREVASRNFSLFLQSLYDAGQQRIFPVLAQYPSLQDVPQVV 850
851 LEGATTPPGENIFLDPYIFWQILNGQLSQYPGPYSDFNMPLEHFNLRSCW 900
901 CVDEAGQKLDGTQTKPGEIPACPGPCEEVKLRVLKFIKETEEIVSASNAS 950
951 SFPLGESFLVAKGIQLTSEELDLPPQFPSRDAFSEKFLRGGEYAIRLAAQ 1000
1001 STLTFYQSLRASLGKSDGAASLLWSGPYMPQCNMIGGWEPVQCHAGTGQC 1050
1051 WCVDGRGEFIPGSLMSRSSQMPQCPTNCELSRASGLISAWKQAGPQRNPG 1100
1101 PGDLFIPVCLQTGEYVRKQTSGTGTWCVDPASGEGMPVNTNGSAQCPGLC 1150
1151 DVLKSRALSRKVGLGYSPVCEALDGAFSPVQCDLAQGSCWCVLGSGEEVP 1200
1201 GTRVVGTQPACESPQCPLPFSGSDVADGVIFCETASSSGVTTVQQCQLLC 1250
1251 RQGLRSAFSPGPLICSLESQHWVTLPPPRACQRPQLWQTMQTQAHFQLLL 1300
1301 PPGKMCSVDYSGLLQAFQVFILDELIARGFCQIQVKTFGTLVSSTVCDNS 1350
1351 SIQVGCLTAERLGVNVTWKLQLEDISVGSLPDLYSIERAVTGQDLLGRFA 1400
1401 DLIQSGRFQLHLDSKTFSADTTLYFLNGDSFVTSPRTQLGCMEGFYRVPT 1450
1451 TRQDALGCVKCPEGSFSQDGRCTPCPAGTYQEQAGSSACIPCPRGRTTIT 1500
1501 TGAFSKTHCVTDCQKNEAGLQCDQNGQYQASQKNRDSGEVFCVDSEGRKL 1550
1551 QWLQTEAGLSESQCLMIRKFDKAPESKVIFDANSPVIVKSSVPSADSPLV 1600
1601 QCLTDCANDEACSFLTVSTMESEVSCDFYSWTRDNFACVTSDQEQDAMGS 1650
1651 LKATSFGSLRCQVKVRNSGKDSLAVYVKKGYESTAAGQKSFEPTGFQNVL 1700
1701 SGLYSPVVFSASGANLTDTHTYCLLACDNDSCCDGFIITQVKGGPTICGL 1750
1751 LSSPDILLCHINDWRDTSATQANATCAGVTYDQGSRQMTLSLGGQEFLQG 1800
1801 LALLEGTQDSFTSFQQVYLWKDSDMGSRPESMGCERGMVPRSDFPGDMAT 1850
1851 ELFSPVDITQVIVNTSHSLPSQQYWLFTHLFSAEQANLWCLSRCAQEPIF 1900
1901 CQLADITKSSSLYFTCFLYPEAQVCDNVMESNAKNCSQILPHQPTALFRR 1950
1951 KVVLNDRVKNFYTRLPFQKLTGISIRDKVPMSGKLISNGFFECERLCDRD 2000
2001 PCCTGFGFLNVSQLQGGEVTCLTLNSMGIQTCNEESGATWRILDCGSEDT 2050
2051 EVHTYPFGWYQKPAVWSDTPSFCPSAALQSLTEEKVTSDSWQTLALSSVI 2100
2101 VDPSIKHFDVAHISTAATSNFSMAQDFCLQQCSRHQDCLVTTLQIQPGVV 2150
2151 RCVFYPDIQNCIHSLRSHTCWLLLHEEATYIYRKSGIPLVQSDVTSTPSV 2200
2201 RIDSFGQLQGGSQVIKVGTAWKQVYRFLGVPYAAPPLADNRFRAPEVLNW 2250
2251 TGSWDATKPRASCWQPGTRTPTPPQINEDCLYLNVFVPENLVSNASVLVF 2300
2301 FHNTMEMEGSGGQLTIDGSILAAVGNFIVVTANYRLGVFGFLSSGSDEVA 2350
2351 GNWGLLDQVAALTWVQSHIGAFGGDPQRVTLAADRSGADVASIHLLISRP 2400
2401 TRLQLFRKALLMGGSALSPAAIISPERAQQQAAALAKEVGCPTSSIQEVV 2450
2451 SCLRQKPANILNDAQTKLLAVSGPFHYWGPVVDGQYLRELPSRRLKRPLP 2500
2501 VKVDLLIGGSQDDGLINRAKAVKQFEESQGRTNSKTAFYQALQNSLGGED 2550
2551 SDARILAAAVWYYSLEHSTDDYASFSRALENATRDYFIICPMVNMASLWA 2600
2601 RRTRGNVFMYHVPESYGHGSLELLADVQYAFGLPFYSAYQGQFSTEEQSL 2650
2651 SLKVMQYFSNFIRSGNPNYPHEFSRKAAEFATPWPDFIPGAGGESYKELS 2700
2701 AQLPNRQGLKQADCSFWSKYIQTLKDADGAKDAQLTKSEEEDLEVGPGLE 2750
2751 EDLSGSLEPVPKSYSK 2766
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.