SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O09053 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  METTSLQRKFPEWMSMQSQRCATEEKACVQKSVLEDNLPFLEFPGSIVYS    50
51 YEASDCSFLSEDISMRLSDGDVVGFDMEWPPIYKPGKRSRVAVIQLCVSE 100
101 SKCYLFHISSMSVFPQGLKMLLENKSIKKAGVGIEGDQWKLLRDFDVKLE 150
151 SFVELTDVANEKLKCAETWSLNGLVKHVLGKQLLKDKSIRCSNWSNFPLT 200
201 EDQKLYAATDAYAGLIIYQKLGNLGDTAQVFALNKAEENLPLEMKKQLNS 250
251 ISEEMRDLANRFPVTCRNLETLQRVPVILKSISENLCSLRKVICGPTNTE 300
301 TRLKPGSSFNLLSSEDSAAAGEKEKQIGKHSTFAKIKEEPWDPELDSLVK 350
351 QEEVDVFRNQVKQEKGESENEIEDNLLREDMERTCVIPSISENELQDLEQ 400
401 QAKEEKYNDVSHQLSEHLSPNDDENDSSYIIESDEDLEMEMLKSLENLNS 450
451 DVVEPTHSTWLEMGTNGRLPPEEEDGHGNEAIKEEQEEEDHLLPEPNAKQ 500
501 INCLKTYFGHSSFKPVQWKVIHSVLEERRDNVVVMATGYGKSLCFQYPPV 550
551 YTGKIGIVISPLISLMEDQVLQLELSNVPACLLGSAQSKNILGDVKLGKY 600
601 RVIYITPEFCSGNLDLLQQLDSSIGITLIAVDEAHCISEWGHDFRSSFRM 650
651 LGSLKTALPLVPVIALSATASSSIREDIISCLNLKDPQITCTGFDRPNLY 700
701 LEVGRKTGNILQDLKPFLVRKASSAWEFEGPTIIYCPSRKMTEQVTAELG 750
751 KLNLACRTYHAGMKISERKDVHHRFLRDEIQCVVATVAFGMGINKADIRK 800
801 VIHYGAPKEMESYYQEIGRAGRDGLQSSCHLLWAPADFNTSRNLLIEIHD 850
851 EKFRLYKLKMMVKMEKYLHSSQCRRRIILSHFEDKCLQKASLDIMGTEKC 900
901 CDNCRPRLNHCLTANNSEDASQDFGPQAFQLLSAVDILQEKFGIGIPILF 950
951 LRGSNSQRLPDKYRGHRLFGAGKEQAESWWKTLSHHLIAEGFLVEVPKEN 1000
1001 KYIKTCSLTKKGRKWLGEASSQSPPSLLLQANEEMFPRKVLLPSSNPVSP 1050
1051 ETTQHSSNQNPAGLTTKQSNLERTHSYKVPEKVSSGTNIPKKSAVMPSPG 1100
1101 TSSSPLEPAISAQELDARTGLYARLVEARQKHANKMDVPPAILATNKVLL 1150
1151 DMAKMRPTTVENMKQIDGVSEGKAALLAPLLEVIKHFCQVTSVQTDLLSS 1200
1201 AKPHKEQEKSQEMEKKDCSLPQSVAVTYTLFQEKKMPLHSIAENRLLPLT 1250
1251 AAGMHLAQAVKAGYPLDMERAGLTPETWKIIMDVIRNPPINSDMYKVKLI 1300
1301 RMLVPENLDTYLIHMAIEILQSGSDSRTQPPCDSSRKRRFPSSAESCESC 1350
1351 KESKEAVTETKASSSESKRKLPEWFAKGNVPSADTGSSSSMAKTKKKGLF 1400
1401 S 1401

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.