| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O13290 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MDKNDNSQCQLSTVSDEILIFLKKLLSLSVSDNLDDICETIALQSTFVDT 50
51 FRSFINDEYYTVIYLYGSPCLTSSPTSPDSCTFGNMTFQWTSLLQDVFSG 100
101 TSAFAIFKRFPLTDTPLTLQNMLYINQLPILKGGHKSNEIPERPINAIFL 150
151 YTKYVMSCYFTAYLAMESVDDRSTIDLNSPSKGKELELTCQKFADFERSF 200
201 TFFCREYQNSDTILQHHPLILSTIKHAEENNLDLSVRLLPSKVLSDSEFY 250
251 KSLSNLVNVWLKTTRSLIKLFHDQISKTALEEFNFWQFYYRSLSRLNDQL 300
301 HSRPVLFVLDILAFGKRFHTIASFNSETNIQCFVDKVGKIDALFKEISLD 350
351 IFLSSSTLESLQLSAALLYSTFSKKWRNTGYPETRVLDFINFITEDLLKL 400
401 ISRLLPALGALSLSNVDFSHRTAVSSDILSLCYIRLKDFLRISGSLKEEQ 450
451 SYYGLKNSIKQIKAFENKLKYIQSFHEKHQQLIGALSEVYGLTHLTELEI 500
501 LEHLNKKEHVFNILTVFKDLQSLNVLDISLKGVNAWNSLETSYYNCMTVL 550
551 EDEVIAQLKSLLQYSKTSSQMFTTLMRFQPLFFRTRVRTSISDCLHLLVN 600
601 RIKQELDLLKTRFTEDVSDTELIAMNELRNLPMASSAIIWATQLKNRLHE 650
651 YTKNINIIFGEDWNNFPDGFELKVECITLQKRLDTNLIFTNWINDVSSRN 700
701 LNFDFDSKIFYLTQSESAESPLRLSVSIDFDPCSFCKEIRTLAHLGYNIP 750
751 SQLMELASCLQRIQLIAMCLIDSVQSFNDVSFEISKTEEERFLLQEYELA 800
801 VRQHIVTGLFISWNDFIVGNLSTPPKCAIGKRNFLKNIHPNVENYAYQFS 850
851 SLTSLLMNKRNAISHTYMQIQEQLFQLDICEYSGDIFLTIQRKLQDLIDL 900
901 LYVNGYSNLPPFVRALNLRFQDLLISRCRKFLSFFKTTILTSGNENNDLK 950
951 SKFSSDMYEKLRGFLKPTNLTIQRNIIEFDPPVYRKKEDSIYLLDMCLQS 1000
1001 VVNIPLLSIKTTAQRNCTLIGFFPVINRLESEILGIFESLLFHFDSILGY 1050
1051 QNYWKKVEPFLNLNSLNLLLKSELFQLDQCYSLSLYLIHLKSEVDEIGKV 1100
1101 TDFKIFSVNNTEFKSQVYLYLREWINALFDRFTFLLGKESEHLLNELDDT 1150
1151 HSSLSTVDFTVNNTESLINSLKIFKKAGCYKLNVEHKIITYQNYEMTFND 1200
1201 CDAFSEFNFSLLKDITSKWKDLLESFECRRLKLENNKDEILRNFSEFAKR 1250
1251 VNTETLSLISEWCASSLSLIKANYDEFSSTVDDFLFRFSKATEQCLMVKY 1300
1301 IKKDLEIEIEESCDFSIQTEEIHLYKKFKDVISSNLEFIVEIKNTRWKLF 1350
1351 DTATLSVQTTHQINALESVHTSFQHFKLFTNTKQSLNQLKDCTLLLQKLK 1400
1401 SCPLKPVHWISLFEITKSTEQLDFEKLLVSDILGIDLQAHESFITTLLNS 1450
1451 AVVEANLENQFNEVHSFWKNSYFSFKSFKGRNYIVVGCQELIDAVEKNMD 1500
1501 SLNLIKTSRHFKDGDMNITDLQSKMKIIVKFLNIWKEIQQIWTHLSAIFY 1550
1551 ESTYIQQLLPELAASFFNSSKTYMHLVTLLKERSYLYKVSNIPSLLESAA 1600
1601 KLSTTLEDSKKSLLKYFELQRHKISRLYFLGDDDLMELISNPCDPFVINK 1650
1651 QIIKLYPGIRSLIVDTENTNINGCTTNEGNELLFDNPICLLDNTQPLHWI 1700
1701 SSLEPFLKATLFQLFSTSFQQIRDFYYNKSRNVFCKEWFLRYPSQITLLS 1750
1751 LRCTLCHEIETGIADCCLDAVFNFINDGISSLVLLADENELSIKKKVTLM 1800
1801 FNELLHFKETVGLLCKNSFNNYFWSREVKAFYREDHDDEAVVIKMFSLEF 1850
1851 IYAFEYSELDDPIVYTDLTRNCFSVLLHSIASNLGGSPIGPAGTGKTETV 1900
1901 KAVSAYLGKNVFVFNCDNAFNYKTIQRILSGLAQIGTYICFDEFNRLDSG 1950
1951 TLSAISYDIQRIQSLVSHSDGLCQSPILLDAPTIFVTMNPGYLGRFKLPS 2000
2001 NLKKLFRPIWMGSPDNKKICEILFLSFGFKESSLLSQVLDSFFLCCSGSL 2050
2051 SNCLHYDFGLRAMKVVIKAAKRIKGFLKKKNTICQELEILWYAIREVLYP 2100
2101 SLIYQDIPLFFKAEESYFNFPAVKANAFIDPDNFEVNIEQTLSKNFFGNN 2150
2151 QYLKLKIMQLYQMSEAYNGIILLGKTGSGKSQIFRILQSALLNIGIDCIV 2200
2201 YVISPKALTKESLFGSMNMDTREWTDGVFTKLLRKTRDSCYYKRYMFVFD 2250
2251 DELSPEWVEAMNSLLDDNKTLTLSNGERIALQPYVKIFFEADSVASLTRA 2300
2301 TISRCGLICISNIDDNILSSTDKMLSFTSGATNYPLGSSNDEFSTVFSKV 2350
2351 LTDEVMMNLISSCYKFSVDLQHIMNFTKQRFFTTFYSLLDQTKLFTRSSN 2400
2401 ITESLSFKELCNYLKKKICYILAWCCTGDTDAKSRERFTHWLMQNASVDL 2450
2451 PEIKDFEHVSILDFDVSLETQSWYPIAGKTLKSSALKYAGNTVIPTLDTV 2500
2501 RYAEFLNFSLTKNRCVIFCGPPGSGKSMLMLGTLRSRQDVEVIALNFSIS 2550
2551 TSSKSVVSFLEQSTVYYRSTGMTIMCPKNHEKVLVLFCDEINLPRSRNCL 2600
2601 AEDVICFLRHMLEHQGFWHPLHKEWVTIKNIFVCGACNPSTDIGRNDFPE 2650
2651 RFLRRTVLIFVDYPESYSLVTIYNALLEKSALINQYKTIILNIVKASVKF 2700
2701 YQVLRENFKSSTQGYVYTPRDLTRWLISFKNYAESYAETNNLSLIKVWYH 2750
2751 EACRVLLDRLVSQKECSWGMTELQKVIVTDFGEFEVSVIFEKQIIFTDIL 2800
2801 KNGLEFLDFASLRPKLESLYKKFYSSHPNNTLVFVDETITHILRFHRILN 2850
2851 NSGMHALLQGSVGLGQKAVVEFVCWLNSFSLFELQKNQTYSIEDFEDNLK 2900
2901 SILILAGTTNCKACLAINESIAGVPGFLDLLNNLLTNSEVSNFFDQNDWA 2950
2951 EIKKNLNKLNEFQPLKFDSEESVTEIFMNNVFQNLCVVFYVYTSADVDFQ 3000
3001 TNSLSPALLNRCTIDYYHSWDYHSMLQIANEVLQETISLNALDHDNPNLK 3050
3051 NIKGSSIYDAVAQAVVNTHTSIVWEFKHLGKTSYFSCLHFIRFLNTFCLI 3100
3101 FGRDANKLSKEKSRIENGFKKIKETSQGIDKFKEALSDQQNVLFSKTKTA 3150
3151 NDRLQCIIQTKQAVEAKKVYSLQAEASLQKKSFLLNEKKNSVMKEVSYAK 3200
3201 PAVIEARKSVSDIKKAHLIELRSLSRPPMAIRITMEVVCKLLGFSATDWK 3250
3251 NVQQLLKRDDFIPKILNYNLEKELSINLRRKIEQDYFSNPIFTFDSVNRA 3300
3301 SKACGPLLLWIKSICNYSKVLEKLEPLNSEVDRLKLEQKNAEECIQETIA 3350
3351 ACKDLDEKLLQLQEEYASMISEIHSMELQMDEVKCKMQRSIEVITDLSIE 3400
3401 RNEWSGFLNLYPKRMWNLVGESLMEASFVVYAGNLDPSMRIFLRNKCEPI 3450
3451 ISSFGFPISKSAVRTNIERCVQTSIESKYYKNLTDYSLENIYIIQENKSP 3500
3501 LLIIDPSSQILDILPSLYKGKASDLISFSNKSFQNQIKLALLSGSAIIIK 3550
3551 DAELWDVSIEPLLKPEFFTGSGEVQTTFAKDTITITLPLNIIFFSEVQSN 3600
3601 ELENKASKFMNVVNFTLSISLLETQMLKSVISVQEPGVFKQKDNCFTLKL 3650
3651 SIERQIRSLQEQLLKTLCSSNENIVGTDEIVVLLKNLKEKHETIRLAYSE 3700
3701 SQSINRKVDELIRRYKLSIKSFLSVVVVFQHFISLKKSYSFSFNFIWSTF 3750
3751 HQMLNVVLENRNQDFKSLIMDALRDLIRRCFLYIFPEDRVLFLFLLMFFF 3800
3801 FPKETESLRKLLIVNGKTLELEQSYLNFFETCSDSNERGGLESLFFKTHA 3850
3851 SNIQNFCTEVLANTHCEEDCLKLLYDLWSSAFKVEFSNIKYDFLKIINDE 3900
3901 SESRMPTIVYLMENCEIDSLLQNAKIPQNIKKLTVSLGSAENESLADSYL 3950
3951 KLASTEPLWLFINNIHLSTPWAEKLPSKMSNHLHKNSRIVCLSEIHNQLP 4000
4001 HQLLCISRSIVFNKQTSFKNNLLNLLELLPTMTHTLPHNRFRLFFFLSWL 4050
4051 HATLAEIYCFTCSSWKEPCYFDDSDFYFGTKILCNILYRNVHLEEFSWGT 4100
4101 FKDLLLNVVYGPKVSASSDFIALDKILKRLIAQFKTQISSNILLTDNFKF 4150
4151 ILPYEITFSSAKEVIGQLPDEIPPGWLDIPENSKRKRTDIYFSMCI 4196
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.