SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O13735 from www.uniprot.org...

The NucPred score for your sequence is 0.89 (see score help below)

   1  MFNNGDNMSRERFSSNHSMQRQKTESRANFSRRLVPSDSNRKPVPNGASN    50
51 SPLSRDAASHLISTIETSIMKLLVVTKELLESLTNWSKGTVNDSAVSSVY 100
101 VTLIGEFLQTTKSFHEAGIETADLNDFPLELRSVLEQTLEKTPSSDALET 150
151 NLPNVRELVMHLLQSLKYKQSLVKSRLNQSRSNLPQMTREANDNDVNRRN 200
201 SRGSSQGSISSFRNPDSRKQYEETTSASLSAPGAFDALKQTNALERRASK 250
251 RLSHMVKDQQNNEGSSQNLRNITVESVRGFLRDSSKPDNIMDSPSPKVSK 300
301 RPSIVRQDSHDSNKLSRRPTINTSFDRKFSPKLTRTPSLTKSLDPGTPTS 350
351 LKSPSLRKSPSSFVQKDVYSRSNSLRISQANRSNVFPGATDVTRSVSDHR 400
401 ILSSSTINDGEVAPPLPQRSRTISSPNSPLSATVLPSSTPILLPRGRSST 450
451 LSVNKKQFNADDGSTLNSPNSIRETEEYAASPKLEDIADEVETDATSQRE 500
501 LLERQIQKAESSEDTSEIESLQGKLSLPQVSSTQQEIQPSSSVPEAASNE 550
551 IAEKEPAVTAIESITERKEEAPVISSSEKIESGTSISTSDTKGGLANFEN 600
601 DSLEELERLIQQNNAEQDEPSYKFHKYEYSSEESGSEDEFKSEKDTKGYV 650
651 ISNDDSTQVEEDSEDKSTPNTGASAKLINDPSSTITVSDVYPKKPASPVE 700
701 ITEPPSSALVSATSPTTNVPIVPEAVHLSTAFSTAPVSTIVSNISPLPTV 750
751 APPNVSGSPSETPISKPEKVPVVSQTEKALPKPLGVDTEKYYFLRYNNQT 800
801 RKVKVESPLSNANELGELFSNVYKISFSGDSYELNIEDPDTKISYLLEDL 850
851 SDLKYKSLVSFMFKEQDANKKREDFHSGEVSAIQHSSAQNTLDDHVNTTT 900
901 HESPSSAFTEILERLKAIEQNISTNHTNDSAALKSSEDHSKLANNFSVPD 950
951 SIDHKFYQQVKNMQLELASLKQISAAFFTRIPLKIKDFKKEINAFNEKGS 1000
1001 LDFQFGRGFVLSSKDRIEREVKNVVEKFDEVNDQIELMRSDVLLRKVRPG 1050
1051 LDQTSQLNEESAYLEKRIQTLERSLEEVTPIWKKQWERELNAIVQEQEFL 1100
1101 DSHTVLISDLKRDLSALSTVLSNVSAIAELQAKSSIKSKPLTLKTATESE 1150
1151 IKGYRDQIQLEVLNLKPDSEARLQAIERSELLQKKRLLQRVDEFSKEVKT 1200
1201 FVENEKLNKIGGAEEADRIRTIQDEKVRKILWDDFVSSKRNGKNGGSFIE 1250
1251 ESSDTVLDEHVVPDNSAKATVAEIDYGSQVDTENFMLERSPLATPKPLKQ 1300
1301 PDFNIYETPIVRSTAHETDDEQTPSKYSDNRVESSSDTVFENTDLKYDNN 1350
1351 VQMSKVTHHVRHDTISTDDYDAYEDAEDVEETSLT 1385

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.