 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O13834 from www.uniprot.org...
The NucPred score for your sequence is 0.90 (see score help below)
1 MRITKSPPKNQYSQPPPRVAEFIRQAQNEEVTSDLGLVSLCSEFRKNDWP 50
51 YPRGDLYSWVPVLNRFDAILERIVEHYSLKDKVQTKPFDSDTLSILLEIL 100
101 SFSAHLLSHCANRSIYNSTVYLEYLLNSSVLEVIDSTLALLLHIVQKATI 150
151 SKRGKQLFSLSQDRLFRFLMFLPQDAMKTGFSQNYETLLFSNEIPQEWCS 200
201 LELSYYKSSPSKDFSSASQPNSEGFSILKLPYNKVLGKPIEELLVKTLHD 250
251 NQIPEQYSFDLLVSLMLRQNLYDINRRRLMIRIGLLALSNLVYAHSQAVQ 300
301 TRFLIADPEITTHLANLVSPDVDLPQNFKAVCFECFKAFFFKKSMIPSVL 350
351 ASLNVSVSYGLMMNLVRDFSKNLENPNFYYEREYVDSFYDFLQFMTSSPL 400
401 GGNMACSAGLTSLLGYHLSVKTPQATYVVARSIVMLDHLIDGYSMAFPDF 450
451 SESKGLDMLVDRVQYELEAGLQDIKSGKGNPEIVLNMDYAISYDRYFLLK 500
501 NLLKFVLHLIQSGGSVVELRNLIDSSLISSLAFLLEHHEVYGSNLFASTT 550
551 NIMSTFIHNEPTCYGIIHEKKLSHAFLDAVNRKILNSSDAITSIPLAFGA 600
601 ICLNSQGFDLFLEKNPIPQLFSIFTSLNHCKSLISSDNAAILGTYIDELM 650
651 RHQPSLKDPIVKMIFKACDQVSALLDNFNPFQYINAKEYPYLLYLETFSS 700
701 FLENIITNEGHARYLISKGIVSHVLNLIQHPVLAFGFIDSSAFNSFFVLL 750
751 HHAVDFDAPEVFRPLLDCIITRCEEGITEFTIVSLKQATISLIKDSNMGH 800
801 EDANNFLHFSIVGNLLTIFAELFSSHAALKKAGNLPLVQLFISPSRYAGI 850
851 FDILCNIKSIATSLDIHICLGVSDDFVLCSDSLTTIVTDKDEKEKFETKK 900
901 KELTQDSSFCKFQNIRSNFSQIAYGVSKFFTSLTRALGNTSVQDFNEYKM 950
951 IHKLGSNIALVVDELINLSSKQITSHPQSLSIASLEASLIFVLGASSIIR 1000
1001 EDDSKVTLVLLISRLLGGCRTMDVLISLNETVSGFFRLSDRDPLSKSNRV 1050
1051 LLALSSTLLNLILVFTSADFMSETSKTLNMALKSEFDMTDFNNSGSKLMH 1100
1101 VLHARIFISVLHLWRSADDLHLPYITRALLTNVLSNCYQFEDGIKNVVDS 1150
1151 INNLRTSIANGDIKEPLDVVTDDNTNSNFSLEETNASVTDMPESEKHENG 1200
1201 IFQAYLLKEMPNDIVSQFEMLKSKQIELTVQMASYEGDLNQNLCDFLYTR 1250
1251 DDVQMNADVQFSVTSGLIVEIKKLAQSTDCKAKNQLGPAVGLLSLFISHD 1300
1301 FTQNKAKNCVLSELNFFLELLHSLNNGLPSDSHKTSIVCILYLLEVLLAD 1350
1351 SKKPDEFEFNSEDCSLKLTDGAITVDLASQKHIMSSVITLLSLNSANLGV 1400
1401 VVSAFRVVVLLTSASEMIHTFVKLSGLPSLFKAMRACSGFCNESLHIPFI 1450
1451 SILRRLLEFDEVVELMMFDDLVNIFKLQGRARKTELHGFIRANAEMVLRS 1500
1501 PECFIKILKDCCVLGHFTPESEHYYLELKESLPGVLQNGQTDLDPSKEQM 1550
1551 SSVIVSFLLDELMDLTETRQFSDRSPNSEFTPENDSLYMYNVFLLQCLTE 1600
1601 LLSGYNACKRCFLNFQPRRKAPFFNLSRKYNSYLVGFFLEKLLPFGCIRL 1650
1651 SENNEVRKAFSVSNWAISILVFLCAYSNEQQTQAVDEIRREVLTSVLKFY 1700
1701 KSSSSFSENLEAYYCKLLVLAELCYRLCDAQTVSQKAPNHLLRRSQDQNV 1750
1751 KTMIDLGYIPTLTNAISEIDMNYPVSRKVVRHILKPLQLLTKEAIFLSQT 1800
1801 NPEALSGAAQDSMGDQSLSSSSEESSDSDREEPPDLYRNSVLGIFQGDIV 1850
1851 NENDENYEDSEDDGVYEEMEFEDDQSGSADSVVSEDDADDVMYSDNDDMN 1900
1901 IEFMVDEQDASSQNDDSSFDEASSHGDVISIDEEDLDNQGEEFEWEDEDN 1950
1951 ASSGYEDELDYNEDEVGENDSTTFEAMENAFTETSDNDDHLEEADHVSPV 2000
2001 EIDFLENDENSSSEQDDEFQWEWNTETPSGADILSRHGALLRDLFPLPGL 2050
2051 SRRVMIINSNDPSRSRPFLNNNASEGLLKHPLLLRNNLIHTPKATELWEN 2100
2101 LAEIDNHTASGAAFQRLLYYLALEIPNEDSSVLGWTSLKVSKHTDPLRAT 2150
2151 SDFIPLFSMQRWNSITSMFFAHASGSIALRITGSVLFALVPPALEKYNLE 2200
2201 NQKKEILENESKEEETRQPEVNIQPEEPINTSDMEGVTTEANEIGSYQEP 2250
2251 SLINIRGREVDVSSLGIDPTFLLALPEEMREEVVFQHIQERHMESISDSS 2300
2301 RRIDPSFLEVLPSDLRDELLFQEAVQMRLFDHATRNNNSVDHEVEMEEID 2350
2351 QGGTVSEHREKSVKPVKKIPVPNLLDRQGLYSLIRLIFISQHNGKNPYYD 2400
2401 LIVNISENKQHRADIVGLLLYILQEASINDRASEKCYRDLTVKSLNNSQQ 2450
2451 KEVKKSTGLLESLCKVPVVNGISAPALILQQGIDLLSHLATWADHFASFF 2500
2501 LSMHDFSGIASKKSAGRKNRESNVYKIAPINVLLGLLAREELFGNTLVMN 2550
2551 TFSELLSTLTKPLLSFYKSEKLQKDSATTGYTNDQDSRGSTVPKQDPGTT 2600
2601 ASRKDKKILSPPNILDENLRLAASLITTDSCSSRTFQNALSVMFHLSSIP 2650
2651 KAKILIGKELLRHGQEYGNSITNDLSRLCADVKSGKNESELQVALAPFCP 2700
2701 ASSNQAKLLRCLKALDYIFERRPKGQEQSPGNIIQLLEFYDNLKFSSLWE 2750
2751 VLSECLSALRDHTSITHVSTVLLPLIESLMVICRLVFIELPEDVGKHISP 2800
2801 ILERFKTLFISFTEEHRKIINMMVFTTPSLMSGSFSLLVKNPKVLEFENK 2850
2851 RNYFNRQLHEEAAKEQYPPLNITVRRDHVFLDSYRALHFKDADEVKFSKL 2900
2901 NIHFRDEEGVDAGGVTREWLQVLARQMFNPDYALFLPVTGDATTFHPNRD 2950
2951 SSVNPDHLSFFKFTGRIIGKALYDGRLLDCHFSRAVYKHMLHRSVSVKDI 3000
3001 ESLDPDYYKSLVWMLNNDITDIITEEFAVEKDVFGEKTVVDLIPNGRNIP 3050
3051 VTELNKQNYVNRMVDYKLRESVKDQLKSLLDGFSDIIPSHLIQIFNEQEL 3100
3101 ELLISGLPEIDIDDWKNNTEYHGYNVSSPQVQWFWRAVRSFDEEERAKLL 3150
3151 QFATGTSKVPLNGFKELEGMSGFQRFNIHKSYGSLNRLPQSHTCFNQLDL 3200
3201 PEYDTYEQLRSMLLTAINEGSEGFGFA 3227
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.