SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O14139 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MSTSAIALALSSSKAIEQLDHVQTETPNLKQEMSESPSNSGVASKRKLQS    50
51 TEWLDPELYGLRRSGRTRSNPGRYVDTDDQEDVFPSKHRKGTRNGSSFSR 100
101 HRTIRDLDDEAESVTSEESESDDSSYGGTPKKRSRQKKSNTYVQDEIRFS 150
151 SRNSKGVNYNEDAYFESFEEEEEEEMYEYATEVSEEPEDTRAIDVVLDHR 200
201 LIEGHDGSTPSEDYEFLIKWVNFSHLHCTWEPYNNISMIRGSKKVDNHIK 250
251 QVILLDREIREDPTTTREDIEAMDIEKERKRENYEEYKQVDRIVAKHLNS 300
301 DGSVEYLVKWKQLLYDFCTWEASSIIEPIAATEIQAFQEREESALSPSRG 350
351 TNYGNSRPKYRKLEQQPSYITGGELRDFQLTGVNWMAYLWHKNENGILAD 400
401 EMGLGKTVQTVAFLSYLAHSLRQHGPFLVVVPLSTVPAWQETLALWASDM 450
451 NCISYLGNTTSRQVIRDYEFYVDGTQKIKFNLLLTTYEYVLKDRSVLSNI 500
501 KWQYMAIDEAHRLKNSESSLYEALSQFKNSNRLLITGTPLQNNIRELAAL 550
551 VDFLMPGKFEIREEINLEAPDEEQEAYIRSLQEHLQPYILRRLKKDVEKS 600
601 LPSKSERILRVELSDLQMYWYKNILTRNYRVLTQSISSGSQISLLNIVVE 650
651 LKKASNHPYLFDGVEESWMQKINSQGRRDEVLKGLIMNSGKMVLLDKLLS 700
701 RLRRDGHRVLIFSQMVRMLDILGDYLSLRGYPHQRLDGTVPAAVRRTSID 750
751 HFNAPNSPDFVFLLSTRAGGLGINLMTADTVIIFDSDWNPQADLQAMARA 800
801 HRIGQKNHVMVYRLLSKDTIEEDVLERARRKMILEYAIISLGVTDKQKNS 850
851 KNDKFSAEELSAILKFGASNMFKAENNQKKLEDMNLDEILEHAEDHDTSN 900
901 DVGGASMGGEEFLKQFEVTDYKADVSWDDIIPLTEREKFEEEDRLREEEE 950
951 ALKQEIELSSRRGNRPYPSSAVESPSYSGTSERKSKKQMLKDEVLLEKEI 1000
1001 RLLYRAMIRYGSLEHRYNDIVKYADLTTQDAHVIKKIAADLVTASRKAVS 1050
1051 AAEKDLSNDQSNNKSSRKALLITFKGVKNINAETLVQRLNDLDILYDAMP 1100
1101 TSGYSNFQIPMHVRSVHGWSCQWGPREDSMLLSGICKHGFGAWLEIRDDP 1150
1151 ELKMKDKIFLEDTKQTDNSVPKDKENKEKKVPSAVHLVRRGEYLLSALRE 1200
1201 HHQNFGIKSSPAISTNGKTQPKKQTANRRQSGKPNVKSAQKIESATRTPS 1250
1251 PAISESRKKPSSKDTKIETPSREQSRSQTASPVKSEKDDGNVSLNAEQKA 1300
1301 RCKELMYPVRKHMKRLRKDSSGLGRAELVKLLTECLTTIGKHIEKTVNDT 1350
1351 PSEEKATVRKNLWMFACYFWPKEEVKYTSLISMYEKMK 1388

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.