SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O14299 from www.uniprot.org...

The NucPred score for your sequence is 0.81 (see score help below)

   1  MGLEHTFYPAEDRFEPLLEHSEPVNFVPKENAKSYVRQGFASPHQSLMDN    50
51 LVDSTESTKRSENFVSHIPLTPSHSGQSEKLMSTRTSHSPYISPTMSYTN 100
101 HSPANLTRNSSFNHQHYSTTLRSPPSMRGRGIDVNSSHYPHISRPRTSSD 150
151 SQKMYTRAPVDYYYIQENPYFNNIDQDSISDKSLPSTNQSLHHSEEDTES 200
201 DNDFSESIHPEFDIDVFYKVSNILYDESDLQDPEKRERLEWHSMLSSVLK 250
251 GDVMQTEKRRLRLTEPDGHSGTYISEVWLGLQAWLHGRLNADQAEVIRKS 300
301 REGVEPVLREVIDFQIQDEETTKPPLEQVTEILEKVEQCKQFYISSREME 350
351 ENVPLSASKEFNYKLNALISWSNVMESIQVETLVLQKWVGNDEFDLTMRT 400
401 PQFNYDGVENTSSFVERIFRQSGLQRTFEQRTLTTLNRIIHQAKQTISEN 450
451 AQAFEEMKLPTYEDKLLPLVRFPIKLLEEALRLRLAYAKKIKGPNFLIVD 500
501 SMLDDFKIALSVAVRIKREYIKIASPSPGWSLPTNVDEDYDNVLLDSLKF 550
551 YFKLLTLKLSSGNKNLYFKEIDFLENEWAFLNEHIYWINGGDIHMAGQFS 600
601 YLSNSLLLNVHRYVESHLNGPTERTAASLTNWYSTLLKNTQIRFRKILRF 650
651 SETLNSRFENASDFVISEGHLPDLVNRLSTTGHFLAYTANLERDGVFVIA 700
701 DHTLSENPEALKALLFSKDISNLETIQQNCSYVLILCPVHPIVWKGRIEK 750
751 VDVPDFSVDLKTNRVRIIASNKREHLQAAKSVFQSISGDLVTLAVECRSS 800
801 ITRVYKEFIRLSKLCMRISSTVVDCVSAVREACSGVNCHDLIYHVFSFAA 850
851 EFGQRILRFLSFDSYWQTKLKRKITSLAVEWISFICDECDLMDRKTFRWG 900
901 VGALEFLMLMIRGNNILLIDDAMFLKIREKVGKSMAFLLTHFDVLGAKSK 950
951 VAAKLQRESTEVSSSPRLTSFGDVEEEALSIQLLQKETMLRIDELEIERN 1000
1001 NTLLERLAIGHVLDDSVFRNRDFIKLASSFSNITIRWQQGHFVRSGMFGD 1050
1051 VYTGVNMETGDLLAVKEIKLQDSRTFRSTVDQIHNEMTVLERLNHPNVVT 1100
1101 YYGVEVHREKVYIFMEFCQGGSLADLLAHGRIEDENVLKVYVVQLLEGLA 1150
1151 YIHSQHILHRDIKPANILLDHRGMIKYSDFGSALYVSPPTDPEVRYEDIQ 1200
1201 PELQHLAGTPMYMAPEIILGTKKGDFGAMDIWSLGCVILEMMTGSTPWSE 1250
1251 MDNEWAIMYHVAAMHTPSIPQNEKISSLARDFIEQCFERDPEQRPRAVDL 1300
1301 LTHPWITDFRKKTIITMPPATITKKTSLSHTITEEKTAQLLAGRHDDSKA 1350
1351 ETDSLAASYKEESALPVASNVGLRQPNELRIDSINLPPAIVTPDTINYSV 1400
1401 D 1401

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.