SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O14529 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  MAANVGSMFQYWKRFDLRRLQKELNSVASELSARQEESEHSHKHLIELRR    50
51 EFKKNVPEEIREMVAPVLKSFQAEVVALSKRSQEAEAAFLSVYKQLIEAP 100
101 DPVPVFEAARSLDDRLQPPSFDPSGQPRRDLHTSWKRNPELLSPKEQREG 150
151 TSPAGPTLTEGSRLPGIPGKALLTETLLQRNEAEKQKGLQEVQITLAARL 200
201 GEAEEKIKVLHSALKATQAELLELRRKYDEEAASKADEVGLIMTNLEKAN 250
251 QRAEAAQREVESLREQLASVNSSIRLACCSPQGPSGDKVNFTLCSGPRLE 300
301 AALASKDREILRLLKDVQHLQSSLQELEEASANQIADLERQLTAKSEAIE 350
351 KLEEKLQAQSDYEEIKTELSILKAMKLASSTCSLPQGMAKPEDSLLIAKE 400
401 AFFPTQKFLLEKPSLLASPEEDPSEDDSIKDSLGTEQSYPSPQQLPPPPG 450
451 PEDPLSPSPGQPLLGPSLGPDGTRTFSLSPFPSLASGERLMMPPAAFKGE 500
501 AGGLLVFPPAFYGAKPPTAPATPAPGPEPLGGPEPADGGGGGAAGPGAEE 550
551 EQLDTAEIAFQVKEQLLKHNIGQRVFGHYVLGLSQGSVSEILARPKPWRK 600
601 LTVKGKEPFIKMKQFLSDEQNVLALRTIQVRQRGSITPRIRTPETGSDDA 650
651 IKSILEQAKKEIESQKGGEPKTSVAPLSIANGTTPASTSEDAIKSILEQA 700
701 RREMQAQQQALLEMEVAPRGRSVPPSPPERPSLATASQNGAPALVKQEEG 750
751 SGGPAQAPLPVLSPAAFVQSIIRKVKSEIGDAGYFDHHWASDRGLLSRPY 800
801 ASVSPSLSSSSSSGYSGQPNGRAWPRGDEAPVPPEDEAAAGAEDEPPRTG 850
851 ELKAEGATAEAGARLPYYPAYVPRTLKPTVPPLTPEQYELYMYREVDTLE 900
901 LTRQVKEKLAKNGICQRIFGEKVLGLSQGSVSDMLSRPKPWSKLTQKGRE 950
951 PFIRMQLWLSDQLGQAVGQQPGASQASPTEPRSSPSPPPSPTEPEKSSQE 1000
1001 PLSLSLESSKENQQPEGRSSSSLSGKMYSGSQAPGGIQEIVAMSPELDTY 1050
1051 SITKRVKEVLTDNNLGQRLFGESILGLTQGSVSDLLSRPKPWHKLSLKGR 1100
1101 EPFVRMQLWLNDPHNVEKLRDMKKLEKKAYLKRRYGLISTGSDSESPATR 1150
1151 SECPSPCLQPQDLSLLQIKKPRVVLAPEEKEALRKAYQLEPYPSQQTIEL 1200
1201 LSFQLNLKTNTVINWFHNYRSRMRREMLVEGTQDEPDLDPSGGPGILPPG 1250
1251 HSHPDPTPQSPDSETEDQKPTVKELELQEGPEENSTPLTTQDKAQVRIKQ 1300
1301 EQMEEDAEEEAGSQPQDSGELDKGQGPPKEEHPDPPGNDGLPKVAPGPLL 1350
1351 PGGSTPDCPSLHPQQESEAGERLHPDPLSFKSASESSRCSLEVSLNSPSA 1400
1401 ASSPGLMMSVSPVPSSSAPISPSPPGAPPAKVPSASPTADMAGALHPSAK 1450
1451 VNPNLQRRHEKMANLNNIIYRVERAANREEALEWEF 1486

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.