| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O14617 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MALKMVKGSIDRMFDKNLQDLVRGIRNHKEDEAKYISQCIDEIKQELKQD 50
51 NIAVKANAVCKLTYLQMLGYDISWAAFNIIEVMSASKFTFKRIGYLAASQ 100
101 SFHEGTDVIMLTTNQIRKDLSSPSQYDTGVALTGLSCFVTPDLARDLAND 150
151 IMTLMSHTKPYIRKKAVLIMYKVFLKYPESLRPAFPRLKEKLEDPDPGVQ 200
201 SAAVNVICELARRNPKNYLSLAPLFFKLMTSSTNNWVLIKIIKLFGALTP 250
251 LEPRLGKKLIEPLTNLIHSTSAMSLLYECVNTVIAVLISLSSGMPNHSAS 300
301 IQLCVQKLRILIEDSDQNLKYLGLLAMSKILKTHPKSVQSHKDLILQCLD 350
351 DKDESIRLRALDLLYGMVSKKNLMEIVKKLMTHVDKAEGTTYRDELLTKI 400
401 IDICSQSNYQYITNFEWYISILVELTRLEGTRHGHLIAAQMLDVAIRVKA 450
451 IRKFAVSQMSALLDSAHLLASSTQRNGICEVLYAAAWICGEFSEHLQEPH 500
501 HTLEAMLRPRVTTLPGHIQAVYVQNVVKLYASILQQKEQAGEAEGAQAVT 550
551 QLMVDRLPQFVQSADLEVQERASCILQLVKHIQKLQAKDVPVAEEVSALF 600
601 AGELNPVAPKAQKKVPVPEGLDLDAWINEPLSDSESEDERPRAVFHEEEQ 650
651 RRPKHRPSEADEEELARRREARKQEQANNPFYIKSSPSPQKRYQDTPGVE 700
701 HIPVVQIDLSVPLKVPGLPMSDQYVKLEEERRHRQKLEKDKRRKKRKEKE 750
751 KKGKRRHSSLPTESDEDIAPAQQVDIVTEEMPENALPSDEDDKDPNDPYR 800
801 ALDIDLDKPLADSEKLPIQKHRNTETSKSPEKDVPMVEKKSKKPKKKEKK 850
851 HKEKERDKEKKKEKEKKKSPKPKKKKHRKEKEERTKGKKKSKKQPPGSEE 900
901 AAGEPVQNGAPEEEQLPPESSYSLLAENSYVKMTCDIRGSLQEDSQVTVA 950
951 IVLENRSSSILKGMELSVLDSLNARMARPQGSSVHDGVPVPFQLPPGVSN 1000
1001 EAQYVFTIQSIVMAQKLKGTLSFIAKNDEGATHEKLDFRLHFSCSSYLIT 1050
1051 TPCYSDAFAKLLESGDLSMSSIKVDGIRMSFQNLLAKICFHHHFSVVERV 1100
1101 DSCASMYSRSIQGHHVCLLVKKGENSVSVDGKCSDSTLLSNLLEEMKATL 1150
1151 AKC 1153
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.