SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O15018 from www.uniprot.org...

The NucPred score for your sequence is 0.86 (see score help below)

   1  MPITQDNAVLHLPLLYQWLQNSLQEGGDGPEQRLCQAAIQKLQEYIQLNF    50
51 AVDESTVPPDHSPPEMEICTVYLTKELGDTETVGLSFGNIPVFGDYGEKR 100
101 RGGKKRKTHQGPVLDVGCIWVTELRKNSPAGKSGKVRLRDEILSLNGQLM 150
151 VGVDVSGASYLAEQCWNGGFIYLIMLRRFKHKAHSTYNGNSSNSSEPGET 200
201 PTLELGDRTAKKGKRTRKFGVISRPPANKAPEESKGSAGCEVSSDPSTEL 250
251 ENGPDPELGNGHVFQLENGPDSLKEVAGPHLERSEVDRGTEHRIPKTDAP 300
301 LTTSNDKRRFSKGGKTDFQSSDCLAREEVGRIWKMELLKESDGLGIQVSG 350
351 GRGSKRSPHAIVVTQVKEGGAAHRDGRLSLGDELLVINGHLLVGLSHEEA 400
401 VAILRSATGMVQLVVASKENSAEDLLRLTSKSLPDLTSSVEDVSSWTDNE 450
451 DQEADGEEDEGTSSSVQRAMPGTDEPQDVCGAEESKGNLESPKQGSNKIK 500
501 LKSRLSGGVHRLESVEEYNELMVRNGDPRIRMLEVSRDGRKHSLPQLLDS 550
551 SSASQEYHIVKKSTRSLSTTQVESPWRLIRPSVISIIGLYKEKGKGLGFS 600
601 IAGGRDCIRGQMGIFVKTIFPNGSAAEDGRLKEGDEILDVNGIPIKGLTF 650
651 QEAIHTFKQIRSGLFVLTVRTKLVSPSLTPCSTPTHMSRSASPNFNTSGG 700
701 ASAGGSDEGSSSSLGRKTPGPKDRIVMEVTLNKEPRVGLGIGACCLALEN 750
751 SPPGIYIHSLAPGSVAKMESNLSRGDQILEVNSVNVRHAALSKVHAILSK 800
801 CPPGPVRLVIGRHPNPKVSEQEMDEVIARSTYQESKEANSSPGLGTPLKS 850
851 PSLAKKDSLISESELSQYFAHDVPGPLSDFMVAGSEDEDHPGSGCSTSEE 900
901 GSLPPSTSTHKEPGKPRANSLVTLGSHRASGLFHKQVTVARQASLPGSPQ 950
951 ALRNPLLRQRKVGCYDANDASDEEEFDREGDCISLPGALPGPIRPLSEDD 1000
1001 PRRVSISSSKGMDVHNQEERPRKTLVSKAISAPLLGSSVDLEESIPEGMV 1050
1051 DAASYAANLTDSAEAPKGSPGSWWKKELSGSSSAPKLEYTVRTDTQSPTN 1100
1101 TGSPSSPQQKSEGLGSRHRPVARVSPHCKRSEAEAKPSGSQTVNLTGRAN 1150
1151 DPCDLDSRVQATSVKVTVAGFQPGGAVEKESLGKLTTGDACVSTSCELAS 1200
1201 ALSHLDASHLTENLPKAASELGQQPMTELDSSSDLISSPGKKGAAHPDPS 1250
1251 KTSVDTGQVSRPENPSQPASPRVTKCKARSPVRLPHEGSPSPGEKAAAPP 1300
1301 DYSKTRSASETSTPHNTRRVAALRGAGPGAEGMTPAGAVLPGDPLTSQEQ 1350
1351 RQGAPGNHSKALEMTGIHAPESSQEPSLLEGADSVSSRAPQASLSMLPST 1400
1401 DNTKEACGHVSGHCCPGGSRESPVTDIDSFIKELDASAARSPSSQTGDSG 1450
1451 SQEGSAQGHPPAGAGGGSSCRAEPVPGGQTSSPRRAWAAGAPAYPQWASQ 1500
1501 PSVLDSINPDKHFTVNKNFLSNYSRNFSSFHEDSTSLSGLGDSTEPSLSS 1550
1551 MYGDAEDSSSDPESLTEAPRASARDGWSPPRSRVSLHKEDPSESEEEQIE 1600
1601 ICSTRGCPNPPSSPAHLPTQAAICPASAKVLSLKYSTPRESVASPREKAA 1650
1651 CLPGSYTSGPDSSQPSSLLEMSSQEHETHADISTSQNHRPSCAEETTEVT 1700
1701 SASSAMENSPLSKVARHFHSPPIILSSPNMVNGLEHDLLDDETLNQYETS 1750
1751 INAAASLSSFSVDVPKNGESVLENLHISESQDLDDLLQKPKMIARRPIMA 1800
1801 WFKEINKHNQGTHLRSKTEKEQPLMPARSPDSKIQMVSSSQKKGVTVPHS 1850
1851 PPQPKTNLENKDLSKKSPAEMLLTNGQKAKCGPKLKRLSLKGKAKVNSEA 1900
1901 PAANAVKAGGTDHRKPLISPQTSHKTLSKAVSQRLHVADHEDPDRNTTAA 1950
1951 PRSPQCVLESKPPLATSGPLKPSVSDTSIRTFVSPLTSPKPVPEQGMWSR 2000
2001 FHMAVLSEPDRGCPTTPKSPKCRAEGRAPRADSGPVSPAASRNGMSVAGN 2050
2051 RQSEPRLASHVAADTAQPRPTGEKGGNIMASDRLERTNQLKIVEISAEAV 2100
2101 SETVCGNKPAESDRRGGCLAQGNCQEKSEIRLYRQVAESSTSHPSSLPSH 2150
2151 ASQAEQEMSRSFSMAKLASSSSSLQTAIRKAEYSQGKSSLMSDSRGVPRN 2200
2201 SIPGGPSGEDHLYFTPRPATRTYSMPAQFSSHFGREGHPPHSLGRSRDSQ 2250
2251 VPVTSSVVPEAKASRGGLPSLANGQGIYSVKPLLDTSRNLPATDEGDIIS 2300
2301 VQETSCLVTDKIKVTRRHYCYEQNWPHESTSFFSVKQRIKSFENLANADR 2350
2351 PVAKSGASPFLSVSSKPPIGRRSSGSIVSGSLGHPGDAAARLLRRSLSSC 2400
2401 SENQSEAGTLLPQMAKSPSIMTLTISRQNPPETSSKGSDSELKKSLGPLG 2450
2451 IPTPTMTLASPVKRNKSSVRHTQPSPVSRSKLQELRALSMPDLDKLCSED 2500
2501 YSAGPSAVLFKTELEITPRRSPGPPAGGVSCPEKGGNRACPGGSGPKTSA 2550
2551 AETPSSASDTGEAAQDLPFRRSWSVNLDQLLVSAGDQQRLQSVLSSVGSK 2600
2601 STILTLIQEAKAQSENEEDVCFIVLNRKEGSGLGFSVAGGTDVEPKSITV 2650
2651 HRVFSQGAASQEGTMNRGDFLLSVNGASLAGLAHGNVLKVLHQAQLHKDA 2700
2701 LVVIKKGMDQPRPSARQEPPTANGKGLLSRKTIPLEPGIGRSVAVHDALC 2750
2751 VEVLKTSAGLGLSLDGGKSSVTGDGPLVIKRVYKGGAAEQAGIIEAGDEI 2800
2801 LAINGKPLVGLMHFDAWNIMKSVPEGPVQLLIRKHRNSS 2839

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.