SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O15056 from www.uniprot.org...

The NucPred score for your sequence is 0.75 (see score help below)

   1  MALSKGLRLLGRLGAEGDCSVLLEARGRDDCLLFEAGTVATLAPEEKEVI    50
51 KGQYGKLTDAYGCLGELRLKSGGTSLSFLVLVTGCTSVGRIPDAEIYKIT 100
101 ATDFYPLQEEAKEEERLIALKKILSSGVFYFSWPNDGSRFDLTVRTQKQG 150
151 DDSSEWGNSFFWNQLLHVPLRQHQVSCCDWLLKIICGVVTIRTVYASHKQ 200
201 AKACLVSRVSCERTGTRFHTRGVNDDGHVSNFVETEQMIYMDDGVSSFVQ 250
251 IRGSVPLFWEQPGLQVGSHHLRLHRGLEANAPAFDRHMVLLKEQYGQQVV 300
301 VNLLGSRGGEEVLNRAFKKLLWASCHAGDTPMINFDFHQFAKGGKLEKLE 350
351 TLLRPQLKLHWEDFDVFTKGENVSPRFQKGTLRMNCLDCLDRTNTVQSFI 400
401 ALEVLHLQLKTLGLSSKPIVDRFVESFKAMWSLNGHSLSKVFTGSRALEG 450
451 KAKVGKLKDGARSMSRTIQSNFFDGVKQEAIKLLLVGDVYGEEVADKGGM 500
501 LLDSTALLVTPRILKAMTERQSEFTNFKRIRIAMGTWNVNGGKQFRSNVL 550
551 RTAELTDWLLDSPQLSGATDSQDDSSPADIFAVGFEEMVELSAGNIVNAS 600
601 TTNKKMWGEQLQKAISRSHRYILLTSAQLVGVCLYIFVRPYHVPFIRDVA 650
651 IDTVKTGMGGKAGNKGAVGIRFQFHSTSFCFICSHLTAGQSQVKERNEDY 700
701 KEITQKLCFPMGRNVFSHDYVFWCGDFNYRIDLTYEEVFYFVKRQDWKKL 750
751 LEFDQLQLQKSSGKIFKDFHEGAINFGPTYKYDVGSAAYDTSDKCRTPAW 800
801 TDRVLWWRKKHPFDKTAGELNLLDSDLDVDTKVRHTWSPGALQYYGRAEL 850
851 QASDHRPVLAIVEVEVQEVDVGARERVFQEVSSFQGPLDATVVVNLQSPT 900
901 LEEKNEFPEDLRTELMQTLGSYGTIVLVRINQGQMLVTFADSHSALSVLD 950
951 VDGMKVKGRAVKIRPKTKDWLKGLREEIIRKRDSMAPVSPTANSCLLEEN 1000
1001 FDFTSLDYESEGDILEDDEDYLVDEFNQPGVSDSELGGDDLSDVPGPTAL 1050
1051 APPSKSPALTKKKQHPTYKDDADLVELKRELEAVGEFRHRSPSRSLSVPN 1100
1101 RPRPPQPPQRPPPPTGLMVKKSASDASISSGTHGQYSILQTARLLPGAPQ 1150
1151 QPPKARTGISKPYNVKQIKTTNAQEAEAAIRCLLEARGGASEEALSAVAP 1200
1201 RDLEASSEPEPTPGAAKPETPQAPPLLPRRPPPRVPAIKKPTLRRTGKPL 1250
1251 SPEEQFEQQTVHFTIGPPETSVEAPPVVTAPRVPPVPKPRTFQPGKAAER 1300
1301 PSHRKPASDEAPPGAGASVPPPLEAPPLVPKVPPRRKKSAPAAFHLQVLQ 1350
1351 SNSQLLQGLTYNSSDSPSGHPPAAGTVFPQGDFLSTSSATSPDSDGTKAM 1400
1401 KPEAAPLLGDYQDPFWNLLHHPKLLNNTWLSKSSDPLDSGTRSPKRDPID 1450
1451 PVSAGASAAKAELPPDHEHKTLGHWVTISDQEKRTALQVFDPLAKT 1496

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.