SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O15085 from www.uniprot.org...

The NucPred score for your sequence is 0.85 (see score help below)

   1  MSVRLPQSIDRLSSLSSLGDSAPERKSPSHHRQPSDASETTGLVQRCVII    50
51 QKDQHGFGFTVSGDRIVLVQSVRPGGAAMKAGVKEGDRIIKVNGTMVTNS 100
101 SHLEVVKLIKSGAYVALTLLGSSPSSMGISGLQQDPSPAGAPRITSVIPS 150
151 PPPPPPLPPPQRITGPKPLQDPEVQKHATQILRNMLRQEEKELQDILPLY 200
201 GDTSQRPSEGRLSLDSQEGDSGLDSGTERFPSLSESLMNRNSVLSDPGLD 250
251 SPRTSPVIMARVAQHHRRQGSDAAVPSTGDQGVDQSPKPLIIGPEEDYDP 300
301 GYFNNESDIIFQDLEKLKSRPAHLGVFLRYIFSQADPSPLLFYLCAEVYQ 350
351 QASPKDSRSLGKDIWNIFLEKNAPLRVKIPEMLQAEIDSRLRNSEDARGV 400
401 LCEAQEAAMPEIQEQIHDYRTKRTLGLGSLYGENDLLDLDGDPLRERQVA 450
451 EKQLAALGDILSKYEEDRSAPMDFALNTYMSHAGIRLREARPSNTAEKAQ 500
501 SAPDKDKWLPFFPKTKKSSNSKKEKDALEDKKRNPILKYIGKPKSSSQST 550
551 FHIPLSPVEVKPGNVRNIIQHFENNQQYDAPEPGTQRLSTGSFPEDLLES 600
601 DSSRSEIRLGRSESLKGREEMKRSRKAENVPRSRSDVDMDAAAEATRLHQ 650
651 SASSSTSSLSTRSLENPTPPFTPKMGRRSIESPSLGFCTDTLLPHLLEDD 700
701 LGQLSDLEPEPDAQNWQHTVGKDVVAGLTQREIDRQEVINELFVTEASHL 750
751 RTLRVLDLIFYQRMKKENLMPREELARLFPNLPELIEIHNSWCEAMKKLR 800
801 EEGPIIKEISDLMLARFDGPAREELQQVAAQFCSYQSIALELIKTKQRKE 850
851 SRFQLFMQEAESHPQCRRLQLRDLIISEMQRLTKYPLLLESIIKHTEGGT 900
901 SEHEKLCRARDQCREILKYVNEAVKQTENRHRLEGYQKRLDATALERASN 950
951 PLAAEFKSLDLTTRKMIHEGPLTWRISKDKTLDLHVLLLEDLLVLLQKQD 1000
1001 EKLLLKCHSKTAVGSSDSKQTFSPVLKLNAVLIRSVATDKRAFFIICTSK 1050
1051 LGPPQIYELVALTSSDKNTWMELLEEAVRNATRHPGAAPMPVHPPPPGPR 1100
1101 EPAQQGPTPSRVELDDSDVFHGEPEPEELPGGTGSQQRVQGKHQVLLEDP 1150
1151 EQEGSAEEEELGVLPCPSTSLDGENRGIRTRNPIHLAFPGPLFMEGLADS 1200
1201 ALEDVENLRHLILWSLLPGHTMETQAAQEPEDDLTPTPSVISVTSHPWDP 1250
1251 GSPGQAPPGGEGDNTQLAGLEGERPEQEDMGLCSLEHLPPRTRNSGIWES 1300
1301 PELDRNLAEDASSTEAAGGYKVVRKAEVAGSKVVPALPESGQSEPGPPEV 1350
1351 EGGTKATGNCFYVSMPSGPPDSSTDHSEAPMSPPQPDSLPAGQTEPQPQL 1400
1401 QGGNDDPRRPSRSPPSLALRDVGMIFHTIEQLTLKLNRLKDMELAHRELL 1450
1451 KSLGGESSGGTTPVGSFHTEAARWTDGSLSPPAKEPLASDSRNSHELGPC 1500
1501 PEDGSDAPLEDSTADAAASPGP 1522

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.