 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O15360 from www.uniprot.org...
The NucPred score for your sequence is 0.92 (see score help below)
1 MSDSWVPNSASGQDPGGRRRAWAELLAGRVKREKYNPERAQKLKESAVRL 50
51 LRSHQDLNALLLEVEGPLCKKLSLSKVIDCDSSEAYANHSSSFIGSALQD 100
101 QASRLGVPVGILSAGMVASSVGQICTAPAETSHPVLLTVEQRKKLSSLLE 150
151 FAQYLLAHSMFSRLSFCQELWKIQSSLLLEAVWHLHVQGIVSLQELLESH 200
201 PDMHAVGSWLFRNLCCLCEQMEASCQHADVARAMLSDFVQMFVLRGFQKN 250
251 SDLRRTVEPEKMPQVTVDVLQRMLIFALDALAAGVQEESSTHKIVRCWFG 300
301 VFSGHTLGSVISTDPLKRFFSHTLTQILTHSPVLKASDAVQMQREWSFAR 350
351 THPLLTSLYRRLFVMLSAEELVGHLQEVLETQEVHWQRVLSFVSALVVCF 400
401 PEAQQLLEDWVARLMAQAFESCQLDSMVTAFLVVRQAALEGPSAFLSYAD 450
451 WFKASFGSTRGYHGCSKKALVFLFTFLSELVPFESPRYLQVHILHPPLVP 500
501 GKYRSLLTDYISLAKTRLADLKVSIENMGLYEDLSSAGDITEPHSQALQD 550
551 VEKAIMVFEHTGNIPVTVMEASIFRRPYYVSHFLPALLTPRVLPKVPDSR 600
601 VAFIESLKRADKIPPSLYSTYCQACSAAEEKPEDAALGVRAEPNSAEEPL 650
651 GQLTAALGELRASMTDPSQRDVISAQVAVISERLRAVLGHNEDDSSVEIS 700
701 KIQLSINTPRLEPREHMAVDLLLTSFCQNLMAASSVAPPERQGPWAALFV 750
751 RTMCGRVLPAVLTRLCQLLRHQGPSLSAPHVLGLAALAVHLGESRSALPE 800
801 VDVGPPAPGAGLPVPALFDSLLTCRTRDSLFFCLKFCTAAISYSLCKFSS 850
851 QSRDTLCSCLSPGLIKKFQFLMFRLFSEARQPLSEEDVASLSWRPLHLPS 900
901 ADWQRAALSLWTHRTFREVLKEEDVHLTYQDWLHLELEIQPEADALSDTE 950
951 RQDFHQWAIHEHFLPESSASGGCDGDLQAACTILVNALMDFHQSSRSYDH 1000
1001 SENSDLVFGGRTGNEDIISRLQEMVADLELQQDLIVPLGHTPSQEHFLFE 1050
1051 IFRRRLQALTSGWSVAASLQRQRELLMYKRILLRLPSSVLCGSSFQAEQP 1100
1101 ITARCEQFFHLVNSEMRNFCSHGGALTQDITAHFFRGLLNACLRSRDPSL 1150
1151 MVDFILAKCQTKCPLILTSALVWWPSLEPVLLCRWRRHCQSPLPRELQKL 1200
1201 QEGRQFASDFLSPEAASPAPNPDWLSAAALHFAIQQVREENIRKQLKKLD 1250
1251 CEREELLVFLFFFSLMGLLSSHLTSNSTTDLPKAFHVCAAILECLEKRKI 1300
1301 SWLALFQLTESDLRLGRLLLRVAPDQHTRLLPFAFYSLLSYFHEDAAIRE 1350
1351 EAFLHVAVDMYLKLVQLFVAGDTSTVSPPAGRSLELKGQGNPVELITKAR 1400
1401 LFLLQLIPRCPKKSFSHVAELLADRGDCDPEVSAALQSRQQAAPDADLSQ 1450
1451 EPHLF 1455
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.