SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O16140 from www.uniprot.org...

The NucPred score for your sequence is 0.76 (see score help below)

   1  MADIKSMFNKMSSPKQNGTGEPAPAKGQKGAIEKIYQKKSQLEHILLRPD    50
51 TYIGSVERATETMWVYDKVKECMMQKELTSVPDCSFPGLYKIYDEILVNA 100
101 ADNKQRDPKMDVIKIDINQETNTISVYNNGSGIPVVMHKDEKMYVPTMIF 150
151 GHLLTSSNYNDEEEKVTGGRNGYGAKLCNIFSTKFTVETASKQYKKHFKQ 200
201 TWGSNMTKASEPKIKDSGKDDDFTKIVFSPDLAKFKMEKLEDDIVLLMSR 250
251 RAYDVAASSQGVKVYLNGERLKINKFKDYVDLYIKGKDDENGQPLKVVYE 300
301 KVSDRWEVALTISDMGFQQVSFVNSIATTKGGKHVDTVADSVVKNVLEVL 350
351 KKKNKGGVNIKPYQVKTHMWLFVNCLIVNPTFDSQTKENMTLQAKSFGSK 400
401 CNLSEKFITAVTKCGLVESVLTWAKFKAQDQLVKASGKKQSKLKGIPKLE 450
451 DANDAGTKNAHLCTLILTEGDSAKTLAVSGLSVVGRDHYGVFPLEGKPLN 500
501 VRDASHKQVLENVEINNLIKILGLQYKKKYNSVDDLKTLRYGKVMIMADQ 550
551 DQDGSHIKGLIINFIHHNWPELLKLPFLEEFITPIVKATKKDKEISFYSL 600
601 PEFEEWKKETENHHTYNIKYYKGLGTSTSKEAKEYFQNMDRHRIRFKYSG 650
651 PTDDHHIELAFSKKGADQRKEWLTNHMDEVKRRKEIGLSERYLYTKETKT 700
701 VTYSDFVNLELVLFSNGDNVRSIPSMIDGLKPGQRKVIFTCIKRNDKREV 750
751 KVAQLAGSVAEHSAYHHGEQSLAMTIVNLAQNYVGSNNINLLEPRGQFGT 800
801 RLSGGKDSASPRYIFTLMSPLTRLIFHPHDDPLLVHEFEDNQKIEPVYYL 850
851 PIIPMVLVNGVEGIGTGWSTKIPNYNPRDIAENLRRLLDGEKPKVMHPWY 900
901 KNFKGNVEGFGDKYVISGEAAILPGDKIEITELPVGTWTHNYKENVLEPM 950
951 LGTDKVKPLISEYREYNTDTTVRFVVSLLPGKLSEIEAEGIHKVFKLQTT 1000
1001 ISMTCMNAFDYNCCLEKYDKVEEILREFYDLRVKYYVRRKDYLEGQLQAE 1050
1051 ADKLSNQARFILKKCDKGLVIENKKRKAMVEELIKRGYAPDPIADWKKRA 1100
1101 SKIQGLTALEDDDAQESEEEEPEPDPKGKPVDPDKAFQQLKEVKKFNYLL 1150
1151 GMSMWMLTKEKKDELLKQRDQKLTELTTLKNKTAPMLWREDLDAFLIKLD 1200
1201 EVEDKERREELNVNKKTSKAMAGKKNRKSMFDIIPSENGRRVEPKISDDL 1250
1251 IKRIQAAEKAKTRKEIKKEYDPDDPTGISPSSGEKKPKARVKKEKPEKAE 1300
1301 KPDKVDKAEKTDGLKQTKLTFKKEPKKKKMTFSGSSSGEMSASDAEVEVL 1350
1351 VPRERTNARRAATRVQKYKDGSDDSGSDSEPELLDNKIDSDHEAPQTLSI 1400
1401 SDEDDDFNIKKNPAKKPAEMDSDCLFDSLIEDAKKDEPQKTLTKSKSESI 1450
1451 LIRRLNIERQRRCDTSVPPKEKAAPKRKLMNVDKDEKKTKKRPARVMLDQ 1500
1501 DSDDEDSIFDSKKGKKKTAANPKKKAKKKVESDSESDFNISDSSLSD 1547

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.