SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O24308 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MEKRPLQTSNAANIPSKTIEEMYQKKTQLEHILLRPDTYVGSIEKHTQNL    50
51 WVYENDEMVHRAVSYVPGLYKIFDEILVNAADNKQRDPSMDSLKVTIDPE 100
101 ANTVSVYNNGDGVPVEIHQEEKVYVPELIFGHLLTSSNYDDNVKKTTGGR 150
151 NGYGAKLTNIFSTEFIIETADGRRLKKYKQVFSNNMGTKCEPVITKCKAS 200
201 ENWTKVTFKPDLEKFKMAYLEEDVVALMKKRVLDMAGCFGKTVKVELNGT 250
251 LIRFKSFRDYADLFLKCAEKSKPMPLPRIHAKVGDRWEICISLSDGQFQQ 300
301 VSFVNSIATIKGGTHVDYITNQITTYIMNKVNKKKKDANVKAHTVKNHLW 350
351 VFVNSLIDNPAFDSQTKETLTTRQASFGSKCDVPESMLKDVEKSGIVDTL 400
401 LSWADFKQSKDLKKTDGTKTQRLRGCKAEDANEAGGRNSEKCTLILTEGD 450
451 SAKALAMAGLSVVGRDHYGVFPLRGKLLNVREASSKQIMDNEEIQNIKKI 500
501 LGLQQNKEYTNVKSLRYGHLMIMADQDHDGSHIKGLLINFIHSFWPSLLK 550
551 VPSFLVEFTTPVIRASHPNKTITSFYSMPEYEAWKERLGNSATSWKIKYY 600
601 KGLGTSTPQEGREYFSDLGRHRKDFIWDDELDGNAIELAFSKKKAEGRKI 650
651 WMRNFEPGTCRDHEAKLINYKDFVNKELILFSRADLFGSFKKKLYKEIKV 700
701 AQFIGYVSEHSAYHHGEQSLASTIIGMAQDFVGSNNINLLKPNGQFGTCN 750
751 LGGKDHASARYIYTELSPVTRCLFHEHDDKLLEYLNEDGKSIEPNWYMPI 800
801 IPLVLVNGSEGIGTGWSSYIPNYNPREIIANVRRLLNGEELVPMDPWYKG 850
851 FRGTIEKSAKEGGYIVNGTVTEIDEQTFRITELPIRKWTQDYKQFLESIT 900
901 DGAPNVKDPLIEDFRQNGDDAIVDIEIKMKPEKIATILQEGLFKKFKLTS 950
951 TISTSNMHLFDAEGNKKFDTPEQILEEFFPLRLDYYEKSKEYILGNLNRL 1000
1001 LLILDNKVRFILGVVNGEIIVSNRKKAELLIELKEKGFTPMPRKGKSTKP 1050
1051 QVAGANDDDSEEQEDAEPETASQSVSVEGATWGDYDDLLSLPIGTLTLES 1100
1101 VQKLLDEKTEKEKEYEILSGTPTTSLWLKDLDEFEKKLDELDLKYAEDDR 1150
1151 KRASQGSKKANGFASKPAKKPPQPRKNTKKAKSVEPENDNSSMEIENAVE 1200
1201 AAKPAEVAKPKGRAAPKKNIQKEPEDDIQSLQERLAAYNIESSGEKSQAM 1250
1251 ESEEVQQKAAGKKQNNKRGGAKKKSSTIVLESDSDNEVNDVDDDDDDFEE 1300
1301 VQQKAAPVKKGGRKPAAQNAKKAPAKAPAKAPAAPKKRSVGTKQSAGQKL 1350
1351 LTDMLQPAEGTGTSPEKKVRKMRESPFNKKSGSILGRAAAAKDISPIADC 1400
1401 SAGSASNTPLSEDEVVEIAPQPARARPQRANRTQMKYALSESESEEDSDE 1450
1451 DAELSDFEEDDD 1462

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.