 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O42130 from www.uniprot.org...
The NucPred score for your sequence is 0.73 (see score help below)
1 MELLDSPAPLRPLHDNPRLPKADGAQKRLSVERIYQKKTQLEHILLRPDT 50
51 YIGSVETVTQQMWVFDEDVGLNCRDVTFVPGLYKIFDEILVNAADNKQRD 100
101 KSMSCIKVTIDPENNTISVWNNGKGIPVVEHKVEKVYVPALIFGQLLTSS 150
151 NYDDDEKKVTGGRNGYGAKLCNIFSTKFTVETACREYKKLFKQTWTDNMG 200
201 KAGEMTLKHFDGEDYTCVTFQPDLSKFKMTILDKDIVALMSRRAYDIAGS 250
251 TKDVKVFLNGKRLPVKGFRSYVDLYLKDKVDETGNALKVIHEEVNSRWEV 300
301 CLTLSEKGFQQVSFVNSIATTKGGRHVDYVADQIVTKLIDVVKKKNKNGV 350
351 GVKPFQVKNHMWIFVNSLIENPTFDSQTKENMTLQAKSFGSTCKLSEKFI 400
401 KGAVGCGIVESILNWVKFKAQTQLNKKCSAVKHTKIKGVPKLDDANDAGS 450
451 KNSIDCTLILTEGDSAKTLAVSGLGVVGRDKYGVFPLRGKMLNVREASHK 500
501 QIMENAEINNIIKIVGLQYKKNYEDRESLKSLRYGKIMIMTDQDQDGSHI 550
551 KGLLINFIHHNWPSLLRHNFLEEFITPIIKVSKNKEEIPFYSIPEFEEWK 600
601 SSTQNYNSWKIKYYKGLGTSTSKEAKEYFADMARHRIGFKYSGPEDDAAI 650
651 TLAFSKKKVEERKEWLTNFMEDRRQRNVHGLPEDYLYGKDTNYLTYNDFI 700
701 NKELVLFSNSDNERSIPSLVDGLKPGQRKVLFTCFKRNDKREVKGAQLAG 750
751 SVAEMSSYHHGEASLMMTIINLAQNFVGSNNLNLLQPIGQFGTRLHGGKD 800
801 SASPRYIFTMLSPLARLLFPPVDDNVLRFLYDDNQRVEPEWYMPIIPMVL 850
851 INGAEGIGTGWSCKIPNFDIRETVNNIRCLLDGKEPLPMLPSYKNFKGTI 900
901 DELGPNQYVISGEVSILDSTTIEITELPVRTWTQTYKEQVLEPMLNGTEK 950
951 TPPLITDYKEYHTDTTVKFVVKMSEEKLAEAEAVGLHKVFKLQTNLTCNS 1000
1001 MVLFDHVGFLKKYESPQDILKEFFELRLRYYGLRKEWLIGMLGAESAKLN 1050
1051 NQARFILEKIDGKIVIENKPKKELIQVLIQRGYESDPVKAWKELQNKEEE 1100
1101 EGDESGEESAAATGPDFNYLLNMPLWYLTKEKKDELCKQRDNKDKELEDL 1150
1151 KHKSPSDLWKEDLAAFVEELDAVEAKQMQDEMAGITGKPLKVKGGKQGGK 1200
1201 QKVTKAQLAEVMPSPHGIRVVPRVTAEMKAEAEKRIKKKIKSEKNESDEK 1250
1251 QEGNSSGDKEPSSLKQRLAQKRKAEQGTKRQTTLPFKPIKKMKRNPWSDS 1300
1301 ESDSESDDFEVPSKRERVVRQAAAKIKPMVNSDSDADLTSSDEDSEYQEN 1350
1351 SEGNTDSDTTSKKKPPKAKAVPKEKKGKAPKEKPLPDAVPVRVQNVAAES 1400
1401 ASQDPAAPPVSVPRAQAVPKKPAAAKKGSTAKDNQPSIMDILTKKKAAPK 1450
1451 APRRAQREESPPSEATAAVAKKPGPPRGRKATKRLTSSSDSDSDFGSRPS 1500
1501 KSVAAKKSKRDDDDSYSIDLTADSPAAAAPRTRPGRLKKPVQYLESSDED 1550
1551 DMF 1553
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.