SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O42926 from www.uniprot.org...

The NucPred score for your sequence is 0.89 (see score help below)

   1  MLEGLLANFLNRLLGEYIENFDATQLKVAVWNGDVTLRNLQLKRSAFRKL    50
51 ELPISVQYGLVEELTLKIPWSSLKNKPVEIYIVGIRALASMEENVKSQSE 100
101 VDPHQVLESKRRQMQLWEASQIGKAETAYDPKTQTFTESLITRMIDNIQI 150
151 NIRDIHIRFEHLPVSNVVPGGYSFGLLLSEFSIESCNEEWTSTFVETESQ 200
201 TIYKLCSLRGFGIYSDETAECIDKTDINELMNTFQALITDFQSREKDYII 250
251 APVTGMAKVTINKLPTPEIPRFLSQISFRGFDVSLNDSQISCGMSLAHEL 300
301 QDVMSKLAFRKRIVGNVSLDTPLDYLRFIFQKTLHDIQQKHYARSWPAIK 350
351 AFCEKRRNYIKLYKKKFLAVQLSADESKELDVLELNLDISQLKLFRSLAY 400
401 QEIKNEGFEPQPPKQQGWGSWMWNSFRGASDENGEVTDDQRKTVIDAIGL 450
451 NDSIIESAHVGDLQSNTSLFDVRLEVPSGKFSLLKYPKKENVISLELLNF 500
501 FSQFKCNKKDYSFVANLGSLKMYNDDRNFLYPRETSNKEIETTSPSIFTL 550
551 SFERSSSDDNDTDTLGINLRALEFFYDPNLLLRVKGFQSSLFANDNGRKL 600
601 VRLANDAVTDFTSQTVQNLQEYLNEKRKLNVNFQFQTPLLIFPEDCNNPE 650
651 SFSLFVDAGFISITSQNVETNDKESNSESETLYHLIYDRYRVSLESARLL 700
701 LGPLNELKNESNKINEEYYLMNELNTEIFIQAQRVPTPQYPRIKVEGNMP 750
751 CLSFILSDAQFRILNNLASTMLKDGKASDDDDNGDWRPESSESLDSHESE 800
801 YKLNNTPSEQSVKVSHFFEFNMKLGEVTLILCREDSQTKRNSMVSVNFAK 850
851 LLLSFNQFEDNSHLRMSINSFHINDMLSKSSRDNNRQLMRCYAPDSVDAE 900
901 NTPVIVEIKSVKAGENQSETNTTVDFLCANGDFYLAKFSILTLIEFLPSF 950
951 APPPSNDKQSTPQVSNSAAGKMELNFKIHKIGLRLLENYESKPICIDLLA 1000
1001 LDLSVNSTKGISEVESRVDKIQVMAWDHEKDEIVTLIDSKQDSLFDLKCK 1050
1051 MQEGWFIHSPNPSTDVNIKMGSFTMLCHKQPIEEILNYASNFGHYKAIVQ 1100
1101 SVKYLAETGTHQVQQGTNVNINLYISNPIFQIPLTLENGSSAMVEILPGS 1150
1151 FSLKTPSWLPNLTLNLESKSTTLRTIYYSKDFDEKGNQITVLDDLNISLD 1200
1201 GSIVQAVDSAITNYAIDLHCGISELLIHLSQAQYLILLKLASNLPEMLSI 1250
1251 ANAFSANVDAPSVMTLLSEELYSIDTVNDAISNLSQNSSFDMKFGLHFPK 1300
1301 ISLNLYDGTFITPENSLSPLSNFTLNEIRAEGSYDLKTGASALIKMASLA 1350
1351 IEDVRSEKSRYFSNVIIPSTDTESQLQVSFQYKPDTSSILLEGDIFKSMY 1400
1401 VLSLDHLLSIYYWFGQPLMEKKLESPDDVQSLQAESSVSTPAVTAASEKS 1450
1451 ISLSVRFDIRNTSLVFVADASKSTSQAIVLRTDQISLVKQLSYSLTVQKM 1500
1501 GMFVTRMDKLDDGIQILDDFDIGFGLVQDCSENKSFSATLDLDRLLFRIS 1550
1551 VYDLLLLQSIAQASVSVISSYKDKSSSISENMNSGDYGQQILNASNIAAV 1600
1601 QQKAEQTATTLLTVLGHDSLISEEFTINSAGIQLILISDAHCLPVFDFTI 1650
1651 ENFNVLVKDWSTNLSATTSLTLHCNAFNFAKSHWEPVIEPWTFSTTAIMK 1700
1701 DGMHEVNINSDDIAQISLTPMMVTDVHRLIKFYLTNQENNIEKRPEGYPY 1750
1751 VILNQTGYNLSIQYGNLNSSEMQSLSLPSGKCVPCRFESKEVLTSRMSSK 1800
1801 VQDVATKVRVSFDSTWYPVDEVSVHQEGSFLYELKPRIDQRTFLLVTVVL 1850
1851 LESNIKQIILSSPYSIVNRTKEVIEVVCNDRSGHRQSSVIKIDPNETGYV 1900
1901 PLDLACLYPLRIRPVSKLGFLWSNQIVDWHSLNKSPLQYLTCESTSTSWK 1950
1951 HNLLVFARNLMDGSLQNDYPFLQLNILPTLQIENLLPYEINLRIIERSSG 2000
2001 NDWRSSLSPGDSLPILHTDSKSFLLMGINVPDLDLQPVDLPIIYTPISSG 2050
2051 QDVQTSALLTASDKQDVVKLILKYEKLPGTNYVSKVMIYPPYVIFNHTDL 2100
2101 SIQVTSSSPNSIRYTIPSGSYSNDIKPYFYSFDESGRKNRAMISIDNGTS 2150
2151 WSADIGFDTLGSSSQVEVRKTNESDVCLLGMSISESSGKFCLTKSVTFTP 2200
2201 RFVFKNHLDCTVSLREFGSSKVLHLPSNELIPMMYFSNPQEIALLLSLPS 2250
2251 SNNHWTSPFLAQNVGIVHLKAFEFDDDDNNMSTTLLRLCVTLEDATFFVT 2300
2301 ITKEDKAWPFRLKNCTSREICYEQKRPDPESVDSRFLQGSRSMKYALNPG 2350
2351 EEANYSWDFPILKSKLLQVEVGKAIHDLDISSVGQLEPWHPTELDQKIRI 2400
2401 HPEVKVDSLTSLVTFNEIDLSKPKLPSRTNSNVKGSIVEQKFKLVLQLKG 2450
2451 FGISLIDKKYEEFAYATLKNFTFRFDDSKDLNTFGMSLGWLQIDNQMLDS 2500
2501 VYPIALFPTMITQEVKQDDPQLLQLRFSVLKDSSFNILYIKYASLLLQEL 2550
2551 SLEVEDRLVLTLLQLLYPSSDVSKDSASLSKNAFADKFEIPDLDADVYRS 2600
2601 NVFFETLHLQPTRLNISFETSYESDQPAVKSSNPTLDFMTGILISTLGNI 2650
2651 HDAPVQLNSILLENARGTLSEMANRVASHYKQQVGYQIYKIAGRADFLGN 2700
2701 PVGLFNNVASGVFDMFYEPYQGFLLQDSQSFGDSFARGTSSFMRKTIYGV 2750
2751 SDSVSKITGTISKGLSTMTMDPKYQNSRRRFRSRNRPKEAVYGVTAGANS 2800
2801 FYDSMSSGFKGLKKPFTDPKNNSAGKFLKGFGKGMLGLATKPAIGLLDMT 2850
2851 SNVSEGIRNSTDVRTNPEIDKVRVPRYVEFGGLIVPFKPYESLGKYMLSC 2900
2901 LDDGKYAFDEYLYHAEIQNVDILYISTKHFIITGSNYIVKIAVPVKQISG 2950
2951 LRVSEHDLNSSCLFTFAVFWQRCESLFDCEYLSTPNLELFVKEKKKPIMS 3000
3001 ITMSDSSAYGEELMRERFEHLLKAYEKMALMVAEQEEFNAKIEDMALKLL 3050
3051 SEKYDNEAYQAELFYRLSNCVEKVLHNKISITDLKTEYEEILEQTLKKEC 3100
3101 KAYERSCIENVKLKKRTEQATAYYASSSSEP 3131

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.