SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O43103 from www.uniprot.org...

The NucPred score for your sequence is 0.62 (see score help below)

   1  MSVSKNAHAPFPDVTGLRTSGPDFSRVGPQCKLLRVQQSLHLDARAASSF    50
51 SGQDLHLALLSAWCVILFHYGSHEATNIEVLHTSQHGHETLVELDFAEQR 100
101 ELVPFTPSQLAAFVHQARQQQLPAKDLDHGYAAFYQPSHTNEPSPHFQQL 150
151 QLSSRPDISLALSYHLQGSAQLVLEMKAAPSVHSHQSAQLQLRQVAALLE 200
201 SYHSDTQQHALSVERFDWKLRASDNPNYQHLPDPNHIQDRHADRLETEFE 250
251 YFAATTPDALALDFRFDLQDLKSTKWSYAEMNQRAEKVKHLLWSHGVGSA 300
301 SSDPQADHIVALYLEKSPETYLSFIGVLKAGAAWCPIDTDWPASRRQALL 350
351 AKSNAKIVLTHDDKISEQLRHDLESQLVKDKGEITAIRLDQLDAELSQVQ 400
401 VVPPANANRSIQQLAYMIWTSGTTGLPKGVGIQHLAIIQAMRALRIYIPY 450
451 GKDKIGTDQIRYLQYSAYNFDLSIMDCFYTWGLGGTICSCPRGVLLQDLV 500
501 EVGNSLQPTHTLLTPAVMAMTERHRVPSLKVVISGGEKLSQVVADEWSKD 550
551 CCLLNLYGPAEATLIAMNRRVPFGDRVKAPNIGVALPTVSCHALDKYDQI 600
601 VIKGAVGELVLGGPQLARGYVGDPVKTADKFFPHPQLGRVYRTGDLVRQL 650
651 DNQEFEYLGRIDDQVKINGIRIELLEINAAIKNSHDKIKDSETMAFSKKD 700
701 NESEQQIINFSALPGGEPGQLLRTDQDAIAVARELQANAKDSLPSYMVPN 750
751 LFVILSHFPRTSSAKIDRVALKNVLASFDQLDWENKLANEGDDDQVDPAT 800
801 AQAEACLRKWLAKLCNVDASKIGRKTPFTSVGLDSIRAMMFSKRVSEEGF 850
851 AVSVLDVARFPTLKSLGEHLQSSGASSEERAKRAASFLADFDAAFRPVVS 900
901 SWVKQRKADASAIQSILPCTPLQEGMLAESQRDSSSYRIQRQYRLASDCD 950
951 QARLSKALIETVAHFDSLRTSFADVGSLDVGLHQREWPFQPHFLQIVWKS 1000
1001 FTPLIEQLDVDDGSDAEQAILSAAKTKLDLDPFGTSPPVAFLFVKQALSR 1050
1051 SLVVVAHHSTYDARSLGIFEDHVEAVYNRQKPPTSLQFSTALAQILPIDQ 1100
1101 TEAQRHADVWQKALSNYPRGEYASFPTLSLTRPSEADADQASLHQSRYLE 1150
1151 ANINWAKIESACRELGVSARPLVQTAWALVLSAFTESQHLILGDSVSGRT 1200
1201 LSAELDLAYGPVLSTVPVPFMLRPEQKLGNLIKQMDDFQTSIMEAQHTDL 1250
1251 GAIRRMLQVPPRESLFHSVFVLEPAPEQPEDIDSSQFRLSKMADLGVATE 1300
1301 HVLGVEVLPASDGSVKLGLSWQKNIISEGFGGLILEQFDRSLTALCSSLD 1350
1351 ADVGSLLYCHPRSDQQASSFYSVTKPVSKQKCSSATFTGVASSLNKQAIS 1400
1401 DNSNAVEIYQDMADSPSSRKPAATMSYPELEQASNGVANLFRHLPRNSVV 1450
1451 GVCLERGLESYIVPLAILKAGHAYLPLDATLPLDRKKELVKDSGAALIVA 1500
1501 SSKFTDFDSLTGVEMLGTDSRQFKDAVKDGKATVSVESRSDDVAFIIYTS 1550
1551 GSTGKPKGCLLTQANLAAAVEGFYYNYEKEAPGSFESRARFLARSAEAFD 1600
1601 VHLLEIFLSLRVGATIVTGPRALIHDDIAKTMSTLEVTHACVVPSLFFSK 1650
1651 GKRIEPSVVPSLRVLIIGGEALTQDLCQIWGSEGSERPVVLNAYGPSEAT 1700
1701 IGNSVARVSKKSRPSNIGAPFPGTQYLVLKDVNGQLVPTLRGEPGELYIG 1750
1751 GEQVAKGYLNRPDSSSFITYQGQQIYRTGDMVRLHPSDEAEYLGRIDGSQ 1800
1801 VKVRGARLELAEVDAALSASLNENLGTVGTAVTIHADHPKIEGAARLVSF 1850
1851 FAQDCVRTKAQDSVDPGALLVQAPEAVKQSAELRRSVRARLPQYMVPSLV 1900
1901 LALTYLPISPLSGKADRRLLKELYHSIDPSKLSTLSDKNESRQRELTDSE 1950
1951 QTVAELVRSSVRLSSDVHLMHDLDLIMAGLDSLTVVTLANKLRKHGYDAT 2000
2001 VSSIMNEPTIEAIAGRRIDKLSSNETSDVEWKQTVSQLTDKVRSLPQYRG 2050
2051 TQIETALPCVPIQVALVSQAVSDDRSTPRYITTISIDLSSNEFSADRIRN 2100
2101 AWMTALSRHEIYRTVFAEVDRTLVQVVLSAESLTSNWSATSEPIPSPDSL 2150
2151 ADYHASTAKDIVANISSVPALRLKLWQGENGAPTLTLTCSHAIYDGDSIR 2200
2201 MLLKEASDCLVTKSKVVPALPFQEAARCIVGDAEDEEAKQFWTTTLADFL 2250
2251 PTTVPNLTGVRPEHNVSRGEELTIASHLSFTQLEKAARAAKVTIQSILVA 2300
2301 AFAHLLGLYAGESDVTLGLVLSGRSIPVDGVESIHGPCVTTVPLRLTDAR 2350
2351 SNASSDLCKRAHQAVNAILPHQHVSLPQLMRWLDLSKAPFEALFSYLGQS 2400
2401 ERSSEKPYFSERASQMERDYSLALEVSAVGDAVNLHLAFDTRSMPAEQAK 2450
2451 RMLCQYDGFLTVFTGTKRVDDDGKHLSILNKSCYVPTSANETIVARFTEH 2500
2501 VKANPDAPAIVFASSMQEPPKVTSYAELDSLSTKIAFHLVHAAGPFVGVH 2550
2551 LNKEGPELYATILAIWKAGKAYLPLDPSLPVERLSYMIESVGDCPVVASH 2600
2601 STKENLASFRCKVLDLKELVKPRSGAHELPSQNLDALCYLLFTSGSTGKP 2650
2651 KAVQINQRALAGALYSWERILPFTRTSRFLQLASIGFDVCLIEMCMPLSL 2700
2701 GFSIGTAPKQELLEDLTHSIKHLGITIADLPAALAGAVHPEDVRLEWLMS 2750
2751 GGDVIDSRVVDEWNHAKRLLINAWGPTEATIGNTLGQVKRGATRNLIGGV 2800
2801 YPSSSMFVLDENSTRILPSGAIGELAVGGPQLADCYYGREELTAEKFILL 2850
2851 EDGTRVYRTGDLGRFLVDDTVECLGRIGSDRQVKVNGQRMELDEVCSVIS 2900
2901 AQAGVYDADVQYLKHPSMGSKQLVAFVAAAETQAKQGDMDVRDDDKAIDL 2950
2951 CIRLEQEAAKRLATYMVPTHWIVMKHGLPLTHNNKTDHKALAAFYGRMDA 3000
3001 TLLRSLGAKREGAISSHAWTQSELKLRALVSDFCNVPQDQLARNTSFHRL 3050
3051 GIDSISAIRLVKQLRTSGFTFSVADVLSTPNIAALADKQMQSSACSSDHA 3100
3101 QPNEGLNEWIGQISSVAENEAWKWSSKDSLVSVLPCTPLQSGMIAQSLAS 3150
3151 AGGLYFHHHAFELQSTEKQHVVAAWRKLVERLDILRTTFHPVDGLHPWTQ 3200
3201 AVHSEVQPRIVQHSGSFQSCGLDAIDGQPSFQDEQAFRTPPFALHLWSQE 3250
3251 GKLVVLISIHHALYDGSSLPQLLEDFEALITGNQAKLTSRLPFYKLVPSL 3300
3301 LSQDEDVQHWVNALHAFQPTLLCKRSNKPSGAAVLLEKRLALTSQELESR 3350
3351 CRAIGVSPQVLCNLTFGKLLAIESQTRDVCFGQLFGLLDLMPEADTCVGP 3400
3401 AFNTTATRIRFQELDAPVSKLATTLQQANDAGRPHRRAALRDVQAKLGRG 3450
3451 QLFDALFDYQRSYDQEDSKLRQIELQSDGTERAQYTLNVAFVQGPSQMSI 3500
3501 VAKADGNRYDQKALEGVVYRLEHLLEHLSIRVEEPISVLPDVFGETAFPL 3550
3551 HLAQVSVANGTSTSKASAQNSANQALSQDGSKLASIISQIAGIDEMELHG 3600
3601 ETRLSQLGLDSISAIRIASQARKAGLNLRMGEIVAGETINAILSARSQTN 3650
3651 ATKSSDHVNRNGRGNGHARVSLETAKRVAARLAIDFEQVERVLPVLPGQK 3700
3701 LWLATWAQSQGGGGFSFAYRLAGAEADKVKETWQKLRQLQPILRTAFLVH 3750
3751 HDGGASQVVLKADSVSAGSGFAEVQVERDAELTAKDVVGRRAAQGWPDLT 3800
3801 SPPVELTLVGEIVVFSLHHVLYDAFSIEFLARDFGSLYNAGELVSSNQWP 3850
3851 EVVEHIVEEQQRTRGDAQEYWCRALAPGSSGLLADRPGSTGEAWHVQHNA 3900
3901 ISLSSAVDVRIRKAGLTLAGVLLAAWSTLLSERMHDASPVFGLYQLGRSS 3950
3951 SFESIDKVHGPLLNCLPIQLRGGSLLDKARAAVSELRLRAKFEQTDLQDA 4000
4001 HRWAGLSQHQACYNTFVNILFGDQLDQHLEMHQLDLGHPLDYSHHSQHST 4050
4051 HDRTPPSTPHVALPWQPDVNLDVVLKNHAVDIAIKANTSVVAQADLHTLV 4100
4101 NRLVQLVHATLELL 4114

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.