| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O43166 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MTSLKRSQTERPLATDRASVVGTDGTPKVHTDDFYMRRFRSQNGSLGSSV 50
51 MAPVGPPRSEGSHHITSTPGVPKMGVRARIADWPPRKENIKESSRSSQEI 100
101 ETSSCLDSLSSKSSPVSQGSSVSLNSNDSAMLKSIQNTLKNKTRPSENMD 150
151 SRFLMPEAYPSSPRKALRRIRQRSNSDITISELDVDSFDECISPTYKTGP 200
201 SLHREYGSTSSIDKQGTSGESFFDLLKGYKDDKSDRGPTPTKLSDFLITG 250
251 GGKGSGFSLDVIDGPISQRENLRLFKEREKPLKRRSKSETGDSSIFRKLR 300
301 NAKGEELGKSSDLEDNRSEDSVRPWTCPKCFAHYDVQSILFDLNEAIMNR 350
351 HNVIKRRNTTTGASAAAVASLVSGPLSHSASFSSPMGSTEDLNSKGSLSM 400
401 DQGDDKSNELVMSCPYFRNEIGGEGERKISLSKSNSGSFSGCESASFEST 450
451 LSSHCTNAGVAVLEVPKENLVLHLDRVKRYIVEHVDLGAYYYRKFFYQKE 500
501 HWNYFGADENLGPVAVSIRREKPDEMKENGSPYNYRIIFRTSELMTLRGS 550
551 VLEDAIPSTAKHSTARGLPLKEVLEHVVPELNVQCLRLAFNTPKVTEQLM 600
601 KLDEQGLNYQQKVGIMYCKAGQSTEEEMYNNESAGPAFEEFLQLLGERVR 650
651 LKGFEKYRAQLDTKTDSTGTHSLYTTYKDYEIMFHVSTMLPYTPNNKQQL 700
701 LRKRHIGNDIVTIVFQEPGAQPFSPKNIRSHFQHVFVIVRVHNPCSDSVC 750
751 YSVAVTRSRDVPSFGPPIPKGVTFPKSNVFRDFLLAKVINAENAAHKSEK 800
801 FRAMATRTRQEYLKDLAEKNVTNTPIDPSGKFPFISLASKKKEKSKPYPG 850
851 AELSSMGAIVWAVRAEDYNKAMELDCLLGISNEFIVLIEQETKSVVFNCS 900
901 CRDVIGWTSTDTSLKIFYERGECVSVGSFINIEEIKEIVKRLQFVSKGCE 950
951 SVEMTLRRNGLGQLGFHVNYEGIVADVEPYGYAWQAGLRQGSRLVEICKV 1000
1001 AVATLSHEQMIDLLRTSVTVKVVIIPPHDDCTPRRSCSETYRMPVMEYKM 1050
1051 NEGVSYEFKFPFRNNNKWQRNASKGPHSPQVPSQVQSPMTSRLNAGKGDG 1100
1101 KMPPPERAANIPRSISSDGRPLERRLSPGSDIYVTVSSMALARSQCRNSP 1150
1151 SNLSSSSDTGSVGGTYRQKSMPEGFGVSRRSPASIDRQNTQSDIGGSGKS 1200
1201 TPSWQRSEDSIADQMAYSYRGPQDFNSFVLEQHEYTEPTCHLPAVSKVLP 1250
1251 AFRESPSGRLMRQDPVVHLSPNKQGHSDSHYSSHSSSNTLSSNASSAHSD 1300
1301 EKWYDGDRTESELNSYNYLQGTSADSGIDTTSYGPSHGSTASLGAATSSP 1350
1351 RSGPGKEKVAPLWHSSSEVISMADRTLETESHGLDRKTESSLSLDIHSKS 1400
1401 QAGSTPLTRENSTFSINDAASHTSTMSSRHSASPVVFTSARSSPKEELHP 1450
1451 AAPSQLAPSFSSSSSSSSGPRSFYPRQGATSKYLIGWKKPEGTINSVGFM 1500
1501 DTRKRHQSDGNEIAHTRLRASTRDLRASPKPTSKSTIEEDLKKLIDLESP 1550
1551 TPESQKSFKFHALSSPQSPFPSTPTSRRALHRTLSDESIYNSQREHFFTS 1600
1601 RASLLDQALPNDVLFSSTYPSLPKSLPLRRPSYTLGMKSLHGEFSASDSS 1650
1651 LTDIQETRRQPMPDPGLMPLPDTAADLDWSNLVDAAKAYEVQRASFFAAS 1700
1701 DENHRPLSAASNSDQLEDQALAQMKPYSSSKDSSPTLASKVDQLEGMLKM 1750
1751 LREDLKKEKEDKAHLQAEVQHLREDNLRLQEESQNASDKLKKFTEWVFNT 1800
1801 IDMS 1804
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.