SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O46374 from www.uniprot.org...

The NucPred score for your sequence is 0.79 (see score help below)

   1  MEVSPLQPVNENMQVNKTKKNEEAKKRLSIERIYQKKTQLEHILLRPDTY    50
51 IGSVESVTQQMWVYDEDIGINYREVTFVPGLYKIFDEILVNAADNKQRDP 100
101 KMSCIRVTIDPENNLISIWNNGKGIPVVEHKVEKMYVPALIFGQLLTSSN 150
151 YDDEEKKVTGGRNGYGAKLCNIFSTKFTVETASREYKKMFKQTWMDNMGR 200
201 AGEMELKPFNGEDYTCITFHPDLSKFKMQSLDKDIVALMVRRAYDIAGST 250
251 KDVKVFLNGNKLPVKGFRSYVDLYLKDKVDETGNPLKIIHEQVNHRWEVC 300
301 LTMSEKGFQQISFVNSIATSKGGRHVDYVADQIVAKLVDVVKKKNKGGVA 350
351 VKAHQVKNHMWIFVNALIENPTFDSQTKENMTLQVKSFGSTCQLSEKFIK 400
401 AAIGCGIVESILNWVKFKAQVQLNKKCSAVKHNRIKGIPKLDDANDAGGR 450
451 NSTECTLILTEGDSAKTLAVSGLGVVGRDKYGVFPLRGKILNVREASHKQ 500
501 IMENAEINNIIKIVGLQYKKNYEDEDSLKTLRYGKIMIMTDQDQDGSHIK 550
551 GLLINFIHHNWPSLLRHRFLEEFITPIVKVSKNKQEMAFYSLPEFEEWKS 600
601 STPNHKKWKVKYYKGLGTSTSKEAKEYFADMKRHRIQFKYSGPEDDAAIS 650
651 LAFSKKQIDDRKEWLTHFMEDRRQRKLLGLPEDYLYGQTTTYLTYNDFIN 700
701 KELILFSNSDNERSIPSMVDGLKPGQRKVLFTCFKRNDKREVKVAQLAGS 750
751 VAEMSSYHHGEMSLMMTIINLAQNFVGSNNLNLLQPIGQFGTRLHGGKDS 800
801 ASPRYIFTMLSPLARLLFPPKDDHTLKFLYDDNQRVEPEWYIPIIPMVLI 850
851 NGAEGIGTGWSCKIPNFDVREVVNNIRLLMDGEEPLPMLPSYKNFKGTIE 900
901 ELAPNQYVISGEVAILNSTTIEISELPIRTWTQTYKEQVLEPMLNGTEKT 950
951 PPLITDYREYHTDTTVKFVVKMTEEKLAEAERVGLHKVFKLQTSLTCNSM 1000
1001 VLFDHVGCLKKYDTVLDILRDFFELRLKYYGLRKEWLLGMLGAESAKLNN 1050
1051 QARFILEKIDGKIIIENKPKKELIKVLIQRGYDSDPVKAWKEAQQKVPDE 1100
1101 EENEESDNEKEADKSDSVADSGPTFNYLLDMPLWYLTKEKKDELCKLRNE 1150
1151 KEQELETLKRKSPSDLWKEDLAAFIEELEAVEAKEKQDEQIGLPGKGGKA 1200
1201 KGKKTQMAEVLPSPCGKRVIPRVTVEMKAEAEKKIKKKIKSENTEGSPQE 1250
1251 DGMEVEGLKQRLEKKQKREPGTKTKKQTTLPFKPIKKAKKRNPWSDSESD 1300
1301 ISSDESNFNVPPREKEPRRAAAKTKFTVDLDSDEDFSDADEKTRDEDFVP 1350
1351 SDTSPQKAETSPKHTNKEPKPQKSTPSVSDFDADDAKDNVPPSPSSPVAD 1400
1401 FPAVTETIKPVSKKNVTVKKTAAKSQSSTSTTGAKKRAAPKGAKKDPDLD 1450
1451 SDVSKKPNPPKPKGRRKRKPSTSDDSDSNFEKMISKAVTSKKPKGESDDF 1500
1501 HLDLDLAVASRAKSGRTKKPIKYLEESDEDDLF 1533

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.