SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O48653 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MDEGSADAGASGRRSRARGSEAVARSAALERLRAIRDGGARAAAAVQVRI    50
51 EAPIYDTVAEEDYAALVARRRKDAGAFIVDDDGLGYADDGREEDWTHRTI 100
101 HSSSDEGSDGEDGAPRKRKQPRPQSKRPPQQSAAAASLSAAAAMMGKQRL 150
151 SSMFTSSVFRKPGSDRGRDSSLAADSIVDDVIAEFAPDDNDREERRRRVG 200
201 RVCAPAPAPTTTAHIKAENVAVDTAMAFRSDNVFEAHEVSDHGNDMDMEL 250
251 KPDVEMEPKLDTPLGASAELANNSNSLEEPKQEANGEVKIEKVHRLNAKI 300
301 KTEDSRNGDMASATAGWMKICGDGDNAGGEGAVAANSNTGVDESSEFELK 350
351 DGALPFYILDAYEEPFGANSGTVYLFGKVEVGKRFHSCCVVVKNMQRCIY 400
401 AIPSSSIFPRDTISRLEKNSTTSDSSPSLRASLHELASGLKSEIADKLSD 450
451 FNVSNFAMTPVKRNYAFERTDLPNGEQYVLKINYPYKDPALPTDLRGQHF 500
501 HALLGTNNSALELLLIKRKIKGPSWLSISKFLACPATQRVSWCKFEVTVD 550
551 SPKDISVLMTSTTLEVPPVVVAAVNLKTIINEKHNVHEIVSASVICCHRV 600
601 KIDSPMRSEDWQKRGMLSHFTVMRKLEGSIFPIGLSKESSDRNQKAGSNV 650
651 LALESSERALLNRLMIELSKLDCDVLVGHNISGFDLDVLLHRAQTCKVPS 700
701 NMWSKIGRLRRSVMPRLTKGNTLYGSGASPGIMSCIAGRLLCDTYLCSRD 750
751 LLKEVSYSLTQLAETQLKKERKEVSPHDIPPMFQSSGALLKLVEYGETDA 800
801 CLALELMFHLSVLPLTRQLTNISGNLWGKTLQGSRAQRVEYLLLHAFHAR 850
851 KFIVPDKFARSKEFNSTKRKMNPDTEAARPDEADPSIDDEGHHVDQGKTK 900
901 KGPSYAGGLVLEPKKGLYDKYVLLLDFNSLYPSIIQEYNICFTTVDRSAD 950
951 GNVPNLPASKTTGVLPELLKSLVERRRMVKSWLKTASGLKRQQFDIQQQA 1000
1001 LKLTANSMYGCLGFSNSRFYAKPLAELITLQGREILQNTVDLVQNNLNLE 1050
1051 VIYGDTDSIMIHTGLDDISRAKGIAGKVIQEVNKKYRCLEIDLDGIYKRM 1100
1101 LLLKKKKYAAIKVALDGSLRENIERKGLDMVRRDWSLLSKEIGDFCLNQI 1150
1151 LSGGSCDDVIESIHSSLVQVQEQMRGGQTELEKYIITKSLTKAPEDYPDA 1200
1201 KNQPHVQVALRLKQNGYSGCSAGDTVPYIICSQQDSESTHSGGIAQRARH 1250
1251 PEELKRNPDKWMIDIDYYLSQQIHPVVSRLCASIQGTSPARLAECLGLDS 1300
1301 SKFQSRLTESDNQDTSSMLLSVIDDEDERYRGCEPLRLSCPSCSTTFDCP 1350
1351 PVSSLIIGSSSGNVSNPNEGNDASINFWRRMRCPRCPDDTDESRVSPAVL 1400
1401 ANQMKRQADSFINLYYKGLLMCDDEGCKYSTHSVNLRVMGDSERGTICPN 1450
1451 YPRCNGHLVRQYTEADLYRQLSYFCYVVDATRCLEKLDQKARLPFEKEFA 1500
1501 ALSQTINLALMEVQKIRDRCAFGWVQLKDLAISI 1534

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.