SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O55207 from www.uniprot.org...

The NucPred score for your sequence is 0.75 (see score help below)

   1  MALSKGLRLLARLDPTGPSSVLLEARGRGDCLLFEAGAVATLAPEEKEVI    50
51 KGLYGKPTDAYGCLGELSLKSGGVPLSFLVLVTGCTSVGRIPDAEIYKIT 100
101 GTEFYPLQEEAKEEDRLPALKKILSSGVFYFAWPNDGACFDLTIRAQKQG 150
151 DDCSEWGTSFFWNQLLHVPLRQHQVNCHDWLLKVICGVVTIRTVYASHKQ 200
201 AKACLISRISCERAGARFLTRGVNDDGHVSNFVETEQAIYMDDGVSSFVQ 250
251 IRGSVPLFWEQPGLQVGSHHLRLHRGLEANAPAFERHMVLLKEQYGQQVV 300
301 VNLLGSRGGEEVLNRAFKKLLWASCHAGDTPMINFDFHQFAKGRKLEKLE 350
351 NLLRPQLKLHWDDFGVFAKGENVSPRFQKGTLRMNCLDCLDRTNTVQCFI 400
401 ALEVLHLQLESLGLNSKPITDRFVESFKAMWSLNGHGLSKVFTGSRALEG 450
451 KAKVGKLKDGARSMSRTIQSNFFDGVKQEAIKLLLVGDVYNEESTDKGRM 500
501 LLDNTALLGLGSNKQNSLSGMLDGKATPRILKAMTERQSEFTNFKRIQIA 550
551 MGTWNVNGGKQFRSNLLGTTELTDWLLDAPQLSGAVDSQDDGGPADIFAV 600
601 GFEEMVELSAGNIVNASTTNRKMWGEQLQKAISRSHRYILLTSAQLVGVC 650
651 LYIFVRPYHVPFIRDVAIDTVKTGMGGKAGNKGAVGIRFQFHSTSFCFIC 700
701 SHLTAGQSQVKERNEDYREITHKLSFPSGRNIFSHDYVFWCGDFNYRIDL 750
751 TYEEVFYFVKRQDWKKLMEFDQLQLQKSSGKIFKDFHEGTINFGPTYKYD 800
801 VGSAAYDTSDKCRTPAWTDRVLWWRKKHPYDKTAGELNLLDSDLDGDANI 850
851 RHTWSPGTLKYYGRAELQASDHRPVLAIVEVEVQEVDVGARERVFQEVSS 900
901 VQGPLDATVIVNLQSPTLEERNEFPEDLRTELMQTLGNYGTIILVRINQG 950
951 QMLVTFADSHSALSVLDVDGMKVKGRAVKIRPKTKDWLEGLREELIRKRD 1000
1001 SMAPVSPTANSCLLEENFDFTSLDYESEGDVLEDDEDYLADEFGQPVVSD 1050
1051 SELGGDDSSDTMSASTPASKSPALAKKKQHPTYKDDADLMTLKLELEVAG 1100
1101 NFRHRSPSRSLSVPNRPRPPHPPQRPPPPTGLMVKKSASDASISSGTHGQ 1150
1151 YSILQTAKLLPGAPQQPPKARTGISKPYNVKQIKTTNAQEAEAAIRCLLE 1200
1201 AGGGVPESAPGATPLRNQGSSKPEASLGPPVLPRRPVPRVPTMKKPTLRR 1250
1251 TGKPMLPEEQCEQQPVHFTMASQEMNLETPPPITAPIPPVPKPRTFQPGR 1300
1301 GVERRPSGGKPEPDDAPPVTGAVELSSPEAPEAPSLAPKVPPRRKKSAPA 1350
1351 AFHLQVLQSNSQLLQGLTCSSSSPSPPKPDTPLLYPQMALGTSSAISPET 1400
1401 DGPRVTEPEAASFHGDYPDPFWSLLHHPKLLNNNTWLSKSSEPLDLGSRT 1450
1451 PERTHTDSAQVNASVVERGLPPDHGGKDFSHWMAASNKDKRTTLGV 1496

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.