 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O60152 from www.uniprot.org...
The NucPred score for your sequence is 0.83 (see score help below)
1 MLQDESSRSLPRSALIRRRLSLFLQSHALMYSFLWSESAKKSLLNEVFSA 50
51 LLGYDHTLWNTLLPERPTIDASFLLRRAQGHSEGDEYRHGTCESKCGHIF 100
101 RKGEVFYRCKTCSVDSNSALCVKCFRATSHKDHETSFTVSAGSGGCCDCG 150
151 NAAAWIGDVSCKIHSHEEDATISNDMIDEIPEKLENSIQTTIDCVLDFVL 200
201 DVFSCSPENLKKMPTLESILQDEKTSRLSENKYGDIDDSCNMYSLVLWND 250
251 EKHSFKQFYEQITTALELPNNVFGKKMANIINDIGRACIVTETNIKELLK 300
301 IGQKLAQINLAVSIRSMRDIFREESCAVLLEWLADIAGSSICGKRNYFSS 350
351 VICKELVRPWNCGLHNSDLTFRLSLRSLALPEIVAIDSPDIFLNEDHINS 400
401 SGPSDTSSHMLETDESSIHSRHWYPSNSLPDVLSYASRVRFDYFFLYDLK 450
451 LWKSLRYKLQELYLGYFITQPGFKEIMGARIAISYRRLAELFLLLDREPE 500
501 HSVIFFSMQIFTVADVAKLLVTEYDFLTTINATLYTFFTYKKLNTPNYVD 550
551 QHAMIRTDSAAFHSRRYIHIFHHIQFMLSIPCVAEIVREDLKFLKQYADF 600
601 FNLFQGMCPYTRAVSQHVEWENDSWMYVLNVSLQVAKLCRHVGNVFMELN 650
651 TNKLANAINYLISLILYPKARNESWTNTESLTTGITVDERGNSKLIEYDI 700
701 ALQPVSFHHPLHWLLVYLLSFYVERDNYKLLWTQLDLLAVTDHPLRVCAW 750
751 LSQMRAKLWIRNGTTLRDQAHHYRNLSFHEYTFDLDVLLLQLTLTYGDPD 800
801 AILPSFISRFQLEDQMYGRFFVPHKHYDVSQVTIMMEEFLLLLISIVCNT 850
851 AVLDHWDITRRIEYGIAHILCFRPLPYSEITKRTCEHLLEHKQFESTLKK 900
901 VATFRNAEGINDSGSFTLKDEYFDYVDPFNIHYSRNQREEAENILRRRYS 950
951 KQHSKHLESVVYEEYHPILHSNITIPILQSDSFVGILWHTIVYAYIYPYD 1000
1001 QGKLEGLVNTALHACLLVLMSEKGSEPIFSKKICENRFPVVEGLQEYCNS 1050
1051 PDVTLFSVLCQMKNHRNFVYVKEKISLIMKILKSEVPLLYEPVYAETLSI 1100
1101 SSSKIVQSLSDAEQQEQHLAKVRMAKERQARIMEQFRMQQNKFLENHALF 1150
1151 EASDCEMDEADEFSVTSSVSTKLFLDPPIDTCLLCQEELKDKRPYGTLVF 1200
1201 VLRSSVLRLFPADDANYVSEVLDIPDSLDHEIQERPFGLAGKRKKVLDST 1250
1251 EAYDYDNYYYEKKGNELHQLKDSFNGFPPDQLDRGLHATGCGHFMHIDCF 1300
1301 KNHIATVTLATRANPYRNHPHNLSMKEFLCPLCKALCNTIFPILWRPKEE 1350
1351 INFQEAGVLTAPLKNWLVSKTFSFNKDLNQQLLDIETSPSEHTQSYNLNL 1400
1401 LDVLQHTLRDSLKDIYTLNTGADNSSDNVEENADNLFQSSVLDHVHFKSV 1450
1451 VNNEVPADERLAISDDIFELYRRLDDVIDLNSSLYSDDFIPVNGKLHNVV 1500
1501 KLFSYSLCQVEASTRGHIKCSSIPADIWVHNLGKNQQVFLRILSESIKTY 1550
1551 TLLCAHDSQKRIGGSIQEFEFISFCQQKRIFGRLLPSLDSPVTKSITDDR 1600
1601 VEPLLVKDTFREFAEASVSGLLSCDESFHYLTQLYYTADIVRNLWILLSQ 1650
1651 RNSLLKCMESVEFEAFDYEQLKGFEHLVIQIWKSLRVDGAGLINFDCCTE 1700
1701 DDLNNPHLLFTLYKLLERFSLIFLRKCALLWYCRYGVSFETQPNLNFQNS 1750
1751 ELSRLQTKMHIPGVIELSNHLCLTASSTEWSLIKHWCNFFTETGPLCDFP 1800
1801 RAYYPGIYELVSLPYELDKVFELLLARRCSKCLTEPMEPAICLFCGKLLC 1850
1851 FQSHCCSFNGIGECNLHMQQCASDIGIFLIVKKCAILYLNPPVGSFSVAP 1900
1901 FLDAYGETDLGLRRGRSQYLSQKRYDETVRTMWLNGSIPSYIARQLDANP 1950
1951 DTGGWETL 1958
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.