SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O60242 from www.uniprot.org...

The NucPred score for your sequence is 0.90 (see score help below)

   1  MKAVRNLLIYIFSTYLLVMFGFNAAQDFWCSTLVKGVIYGSYSVSEMFPK    50
51 NFTNCTWTLENPDPTKYSIYLKFSKKDLSCSNFSLLAYQFDHFSHEKIKD 100
101 LLRKNHSIMQLCNSKNAFVFLQYDKNFIQIRRVFPTNFPGLQKKGEEDQK 150
151 SFFEFLVLNKVSPSQFGCHVLCTWLESCLKSENGRTESCGIMYTKCTCPQ 200
201 HLGEWGIDDQSLILLNNVVLPLNEQTEGCLTQELQTTQVCNLTREAKRPP 250
251 KEEFGMMGDHTIKSQRPRSVHEKRVPQEQADAAKFMAQTGESGVEEWSQW 300
301 STCSVTCGQGSQVRTRTCVSPYGTHCSGPLRESRVCNNTALCPVHGVWEE 350
351 WSPWSLCSFTCGRGQRTRTRSCTPPQYGGRPCEGPETHHKPCNIALCPVD 400
401 GQWQEWSSWSQCSVTCSNGTQQRSRQCTAAAHGGSECRGPWAESRECYNP 450
451 ECTANGQWNQWGHWSGCSKSCDGGWERRIRTCQGAVITGQQCEGTGEEVR 500
501 RCNEQRCPAPYEICPEDYLMSMVWKRTPAGDLAFNQCPLNATGTTSRRCS 550
551 LSLHGVAFWEQPSFARCISNEYRHLQHSIKEHLAKGQRMLAGDGMSQVTK 600
601 TLLDLTQRKNFYAGDLLMSVEILRNVTDTFKRASYIPASDGVQNFFQIVS 650
651 NLLDEENKEKWEDAQQIYPGSIELMQVIEDFIHIVGMGMMDFQNSYLMTG 700
701 NVVASIQKLPAASVLTDINFPMKGRKGMVDWARNSEDRVVIPKSIFTPVS 750
751 SKELDESSVFVLGAVLYKNLDLILPTLRNYTVINSKIIVVTIRPEPKTTD 800
801 SFLEIELAHLANGTLNPYCVLWDDSKTNESLGTWSTQGCKTVLTDASHTK 850
851 CLCDRLSTFAILAQQPREIIMESSGTPSVTLIVGSGLSCLALITLAVVYA 900
901 ALWRYIRSERSIILINFCLSIISSNILILVGQTQTHNKSICTTTTAFLHF 950
951 FFLASFCWVLTEAWQSYMAVTGKIRTRLIRKRFLCLGWGLPALVVATSVG 1000
1001 FTRTKGYGTDHYCWLSLEGGLLYAFVGPAAAVVLVNMVIGILVFNKLVSR 1050
1051 DGILDKKLKHRAGQMSEPHSGLTLKCAKCGVVSTTALSATTASNAMASLW 1100
1101 SSCVVLPLLALTWMSAVLAMTDKRSILFQILFAVFDSLQGFVIVMVHCIL 1150
1151 RREVQDAFRCRLRNCQDPINADSSSSFPNGHAQIMTDFEKDVDIACRSVL 1200
1201 HKDIGPCRAATITGTLSRISLNDDEEEKGTNPEGLSYSTLPGNVISKVII 1250
1251 QQPTGLHMPMSMNELSNPCLKKENSELRRTVYLCTDDNLRGADMDIVHPQ 1300
1301 ERMMESDYIVMPRSSVNNQPSMKEESKMNIGMETLPHERLLHYKVNPEFN 1350
1351 MNPPVMDQFNMNLEQHLAPQEHMQNLPFEPRTAVKNFMASELDDNAGLSR 1400
1401 SETGSTISMSSLERRKSRYSDLDFEKVMHTRKRHMELFQELNQKFQTLDR 1450
1451 FRDIPNTSSMENPAPNKNPWDTFKNPSEYPHYTTINVLDTEAKDALELRP 1500
1501 AEWEKCLNLPLDVQEGDFQTEV 1522

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.