| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O60281 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MADEEAEQERLSCGEGGCVAELQRLGERLQELELQLRESRVPAVEAATDY 50
51 CQQLCQTLLEYAEKWKTSEDPLPLLEVYTVAIQSYVKARPYLTSECENVA 100
101 LVLERLALSCVELLLCLPVELSDKQWEQFQTLVQVAHEKLMENGSCELHF 150
151 LATLAQETGVWKNPVLCTILSQEPLDKDKVNEFLAFEGPILLDMRIKHLI 200
201 KTNQLSQATALAKLCSDHPEIGIKGSFKQTYLVCLCTSSPNGKLIEEISE 250
251 VDCKDALEMICNLESEGDEKSALVLCTAFLSRQLQQGDMYCAWELTLFWS 300
301 KLQQRVEPSIQVYLERCRQLSLLTKTVYHIFFLIKVINSETEGAGLATCI 350
351 ELCVKALRLESTENTEVKISICKTISCLLPDDLEVKRACQLSEFLIEPTV 400
401 DAYYAVEMLYNQPDQKYDEENLPIPNSLRCELLLVLKTQWPFDPEFWDWK 450
451 TLKRQCLALMGEEASIVSSIDELNDSEVYEKVVDYQEESKETSMNGLSGG 500
501 VGANSGLLKDIGDEKQKKREIKQLRERGFISARFRNWQAYMQYCVLCDKE 550
551 FLGHRIVRHAQKHYKDGIYSCPICAKNFNSKETFVPHVTLHVKQSSKERL 600
601 AAMKPLRRLGRPPKITTTNENQKTNTVAKQEQRPIKKNSLYSTDFIVFND 650
651 NDGSDDENDDKDKSYEPEVIPVQKPVPVNEFNCPVTFCKKGFKYFKNLIA 700
701 HVKGHKDNEDAKRFLEMQSKKVICQYCRRHFVSVTHLNDHLQMHCGSKPY 750
751 ICIQMKCKAGFNSYAELLTHRKEHQVFRAKCMFPKCGRIFSEAYLLYDHE 800
801 AQHYNTYTCKFTGCGKVYRSQGELEKHLDDHSTPPEKVLPPEAQLNSSGD 850
851 SIQPSEVNQNTAENIEKERSMLPSENNIENSLLADRSDAWDKSKAESAVT 900
901 KQDQISASELRQANGPLSNGLENPATTPLLQSSEVAVSIKVSLNQGIEDN 950
951 FGKQENSTVEGSGEALVTDLHTPVEDTCNDLCHPGFQERKEQDCFNDAHV 1000
1001 TQNSLVNSETLKIGDLTPQNLERQVNNLMTFSVQNQAAFQNNLPTSKFEC 1050
1051 GDNVKTSSNLYNLPLKTLESIAFVPPQSDLSNSLGTPSVPPKAPVQKFSC 1100
1101 QVEGCTRTYNSSQSIGKHMKTAHPDQYAAFKMQRKSKKGQKANNLNTPNN 1150
1151 GKFVYFLPSPVNSSNPFFTSQTKANGNPACSAQLQHVSPPIFPAHLASVS 1200
1201 TPLLSSMESVINPNITSQDKNEQGGMLCSQMENLPSTALPAQMEDLTKTV 1250
1251 LPLNIDSGSDPFLPLPAESSSMSLFPSPADSGTNSVFSQLENNTNHYSSQ 1300
1301 IEGNTNSSFLKGGNGENAVFPSQVNVANNFSSTNAQQSAPEKVKKDRGRG 1350
1351 PNGKERKPKHNKRAKWPAIIRDGKFICSRCYRAFTNPRSLGGHLSKRSYC 1400
1401 KPLDGAEIAQELLQSNGQPSLLASMILSTNAVNLQQPQQSTFNPEACFKD 1450
1451 PSFLQLLAENRSPAFLPNTFPRSGVTNFNTSVSQEGSEIIKQALETAGIP 1500
1501 STFEGAEMLSHVSTGCVSDASQVNATVMPNPTVPPLLHTVCHPNTLLTNQ 1550
1551 NRTSNSKTSSIEECSSLPVFPTNDLLLKTVENGLCSSSFPNSGGPSQNFT 1600
1601 SNSSRVSVISGPQNTRSSHLNKKGNSASKRRKKVAPPLIAPNASQNLVTS 1650
1651 DLTTMGLIAKSVEIPTTNLHSNVIPTCEPQSLVENLTQKLNNVNNQLFMT 1700
1701 DVKENFKTSLESHTVLAPLTLKTENGDSQMMALNSCTTSINSDLQISEDN 1750
1751 VIQNFEKTLEIIKTAMNSQILEVKSGSQGAGETSQNAQINYNIQLPSVNT 1800
1801 VQNNKLPDSSPFSSFISVMPTKSNIPQSEVSHKEDQIQEILEGLQKLKLE 1850
1851 NDLSTPASQCVLINTSVTLTPTPVKSTADITVIQPVSEMINIQFNDKVNK 1900
1901 PFVCQNQGCNYSAMTKDALFKHYGKIHQYTPEMILEIKKNQLKFAPFKCV 1950
1951 VPTCTKTFTRNSNLRAHCQLVHHFTTEEMVKLKIKRPYGRKSQSENVPAS 2000
2001 RSTQVKKQLAMTEENKKESQPALELRAETQNTHSNVAVIPEKQLVEKKSP 2050
2051 DKTESSLQVITVTSEQCNTNALTNTQTKGRKIRRHKKEKEEKKRKKPVSQ 2100
2101 SLEFPTRYSPYRPYRCVHQGCFAAFTIQQNLILHYQAVHKSDLPAFSAEV 2150
2151 EEESEAGKESEETETKQTLKEFRCQVSDCSRIFQAITGLIQHYMKLHEMT 2200
2201 PEEIESMTASVDVGKFPCDQLECKSSFTTYLNYVVHLEADHGIGLRASKT 2250
2251 EEDGVYKCDCEGCDRIYATRSNLLRHIFNKHNDKHKAHLIRPRRLTPGQE 2300
2301 NMSSKANQEKSKSKHRGTKHSRCGKEGIKMPKTKRKKKNNLENKNAKIVQ 2350
2351 IEENKPYSLKRGKHVYSIKARNDALSECTSRFVTQYPCMIKGCTSVVTSE 2400
2401 SNIIRHYKCHKLSKAFTSQHRNLLIVFKRCCNSQVKETSEQEGAKNDVKD 2450
2451 SDTCVSESNDNSRTTATVSQKEVEKNEKDEMDELTELFITKLINEDSTSV 2500
2501 ETQANTSSNVSNDFQEDNLCQSERQKASNLKRVNKEKNVSQNKKRKVEKA 2550
2551 EPASAAELSSVRKEEETAVAIQTIEEHPASFDWSSFKPMGFEVSFLKFLE 2600
2601 ESAVKQKKNTDKDHPNTGNKKGSHSNSRKNIDKTAVTSGNHVCPCKESET 2650
2651 FVQFANPSQLQCSDNVKIVLDKNLKDCTELVLKQLQEMKPTVSLKKLEVH 2700
2701 SNDPDMSVMKDISIGKATGRGQY 2723
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.