 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O60292 from www.uniprot.org...
The NucPred score for your sequence is 0.94 (see score help below)
1 MTTYRAIPSDGVDLAASCGARVGDVLPGPHTGDYAPLGFWAQNGSMSQPL 50
51 GESPATATATATATTRPSPTTPAMPKMGVRARVADWPPKREALREHSNPS 100
101 PSQDTDGTKATKMAHSMRSIQNGQPPTSTPASSGSKAFHRLSRRRSKDVE 150
151 FQDGWPRSPGRAFLPLRHRSSSEITLSECDAEDAGEPRGARHTGALPLFR 200
201 EYGSTSSIDVQGMPEQSFFDILNEFRSEQPDARGCQALTELLRADPGPHL 250
251 MGGGGGAKGDSHNGQPAKDSLLPLQPTKEKEKARKKPARGLGGGDTVDSS 300
301 IFRKLRSSKPEGEAGRSPGEADEGRSPPEASRPWVCQKSFAHFDVQSMLF 350
351 DLNEAAANRVSVSQRRNTTTGASAASAASAMASLTASRAHSLGGLDPAFT 400
401 STEDLNCKENLEQDLGDDNSNDLLLSCPHFRNEIGGECERNVSFSRASVG 450
451 SPSSGEGHLAEPALSAYRTNASISVLEVPKEQQRTQSRPRQYSIEHVDLG 500
501 ARYYQDYFVGKEHANYFGVDEKLGPVAVSIKREKLEDHKEHGPQYQYRII 550
551 FRTRELITLRGSILEDATPTATKHGTGRGLPLKDALEYVIPELNIHCLRL 600
601 ALNTPKVTEQLLKLDEQGLCRKHKVGILYCKAGQSSEEEMYNNEEAGPAF 650
651 EEFLSLIGEKVCLKGFTKYAAQLDVKTDSTGTHSLYTMYQDYEIMFHVST 700
701 LLPYTPNNRQQLLRKRHIGNDIVTIIFQEPGALPFTPKNIRSHFQHVFII 750
751 VRVHNPCTDNVCYSMAVTRSKDAPPFGPPIPSGTTFRKSDVFRDFLLAKV 800
801 INAENAAHKSDKFHTMATRTRQEYLKDLAENCVSNTPIDSTGKFNLISLT 850
851 SKKKEKTKARAGAEQHSAGAIAWRVVAQDYAQGVEIDCILGISNEFVVLL 900
901 DLRTKEVVFNCYCGDVIGWTPDSSTLKIFYGRGDHIFLQATEGSVEDIRE 950
951 IVQRLKVMTSGWETVDMTLRRNGLGQLGFHVKYDGTVAEVEDYGFAWQAG 1000
1001 LRQGSRLVEICKVAVVTLTHDQMIDLLRTSVTVKVVIIPPFEDGTPRRGW 1050
1051 PETYDMNTSEPKTEQESITPGGRPPYRSNAPWQWSGPASHNSLPASKWAT 1100
1101 PTTPGHAQSLSRPLKQTPIVPFRESQPLHSKRPVSFPETPYTVSPAGADR 1150
1151 VPPYRQPSGSFSTPGSATYVRYKPSPERYTAAPHPLLSLDPHFSHDGTSS 1200
1201 GDSSSGGLTSQESTMERQKPEPLWHVPAQARLSAIAGSSGNKHPSRQDAA 1250
1251 GKDSPNRHSKGEPQYSSHSSSNTLSSNASSSHSDDRWFDPLDPLEPEQDP 1300
1301 LSKGGSSDSGIDTTLYTSSPSCMSLAKAPRPAKPHKPPGSMGLCGGGREA 1350
1351 AGRSHHADRRREVSPAPAVAGQSKGYRPKLYSSGSSTPTGLAGGSRDPPR 1400
1401 QPSDMGSRVGYPAQVYKTASAETPRPSQLAQPSPFQLSASVPKSFFSKQP 1450
1451 VRNKHPTGWKRTEEPPPRPLPFSDPKKQVDTNTKNVFGQPRLRASLRDLR 1500
1501 SPRKNYKSTIEDDLKKLIIMDNLGPEQERDTGQSPQKGLQRTLSDESLCS 1550
1551 GRREPSFASPAGLEPGLPSDVLFTSTCAFPSSTLPARRQHQHPHPPVGPG 1600
1601 ATPAAGSGFPEKKSTISASELSLADGRDRPLRRLDPGLMPLPDTAAGLEW 1650
1651 SSLVNAAKAYEVQRAVSLFSLNDPALSPDIPPAHSPVHSHLSLERGPPTP 1700
1701 RTTPTMSEEPPLDLTGKVYQLEVMLKQLHTDLQKEKQDKVVLQSEVASLR 1750
1751 QNNQRLQEESQAASEQLRKFAEIFCREKKEL 1781
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.