SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O60673 from www.uniprot.org...

The NucPred score for your sequence is 1.00 (see score help below)

   1  MFSVRIVTADYYMASPLQGLDTCQSPLTQAPVKKVPVVRVFGATPAGQKT    50
51 CLHLHGIFPYLYVPYDGYGQQPESYLSQMAFSIDRALNVALGNPSSTAQH 100
101 VFKVSLVSGMPFYGYHEKERHFMKIYLYNPTMVKRICELLQSGAIMNKFY 150
151 QPHEAHIPYLLQLFIDYNLYGMNLINLAAVKFRKARRKSNTLHATGSCKN 200
201 HLSGNSLADTLFRWEQDEIPSSLILEGVEPQSTCELEVDAVAADILNRLD 250
251 IEAQIGGNPGLQAIWEDEKQRRRNRNETSQMSQPESQDHRFVPATESEKK 300
301 FQKRLQEILKQNDFSVTLSGSVDYSDGSQEFSAELTLHSEVLSPEMLQCT 350
351 PANMVEVHKDKESSKGHTRHKVEEALINEEAILNLMENSQTFQPLTQRLS 400
401 ESPVFMDSSPDEALVHLLAGLESDGYRGERNRMPSPCRSFGNNKYPQNSD 450
451 DEENEPQIEKEEMELSLVMSQRWDSNIEEHCAKKRSLCRNTHRSSTEDDD 500
501 SSSGEEMEWSDNSLLLASLSIPQLDGTADENSDNPLNNENSRTHSSVIAT 550
551 SKLSVKPSIFHKDAATLEPSSSAKITFQCKHTSALSSHVLNKEDLIEDLS 600
601 QTNKNTEKGLDNSVTSFTNESTYSMKYPGSLSSTVHSENSHKENSKKEIL 650
651 PVSSCESSIFDYEEDIPSVTRQVPSRKYTNIRKIEKDSPFIHMHRHPNEN 700
701 TLGKNSFNFSDLNHSKNKVSSEGNEKGNSTALSSLFPSSFTENCELLSCS 750
751 GENRTMVHSLNSTADESGLNKLKIRYEEFQEHKTEKPSLSQQAAHYMFFP 800
801 SVVLSNCLTRPQKLSPVTYKLQPGNKPSRLKLNKRKLAGHQETSTKSSET 850
851 GSTKDNFIQNNPCNSNPEKDNALASDLTKTTRGAFENKTPTDGFIDCHFG 900
901 DGTLETEQSFGLYGNKYTLRAKRKVNYETEDSESSFVTHNSKISLPHPME 950
951 IGESLDGTLKSRKRRKMSKKLPPVIIKYIIINRFRGRKNMLVKLGKIDSK 1000
1001 EKQVILTEEKMELYKKLAPLKDFWPKVPDSPATKYPIYPLTPKKSHRRKS 1050
1051 KHKSAKKKTGKQQRTNNENIKRTLSFRKKRSHAILSPPSPSYNAETEDCD 1100
1101 LNYSDVMSKLGFLSERSTSPINSSPPRCWSPTDPRAEEIMAAAEKEAMLF 1150
1151 KGPNVYKKTVNSRIGKTSRARAQIKKSKAKLANPSIVTKKRNKRNQTNKL 1200
1201 VDDGKKKPRAKQKTNEKGTSRKHTTLKDEKIKSQSGAEVKFVLKHQNVSE 1250
1251 FASSSGGSQLLFKQKDMPLMGSAVDHPLSASLPTGINAQQKLSGCFSSFL 1300
1301 ESKKSVDLQTFPSSRDDLHPSVVCNSIGPGVSKINVQRPHNQSAMFTLKE 1350
1351 STLIQKNIFDLSNHLSQVAQNTQISSGMSSKIEDNANNIQRNYLSSIGKL 1400
1401 SEYRNSLESKLDQAYTPNFLHCKDSQQQIVCIAEQSKHSETCSPGNTASE 1450
1451 ESQMPNNCFVTSLRSPIKQIAWEQKQRGFILDMSNFKPERVKPRSLSEAI 1500
1501 SQTKALSQCKNRNVSTPSAFGEGQSGLAVLKELLQKRQQKAQNANTTQDP 1550
1551 LSNKHQPNKNISGSLEHNKANKRTRSVTSPRKPRTPRSTKQKEKIPKLLK 1600
1601 VDSLNLQNSSQLDNSVSDDSPIFFSDPGFESCYSLEDSLSPEHNYNFDIN 1650
1651 TIGQTGFCSFYSGSQFVPADQNLPQKFLSDAVQDLFPGQAIEKNEFLSHD 1700
1701 NQKCDEDKHHTTDSASWIRSGTLSPEIFEKSTIDSNENRRHNQWKNSFHP 1750
1751 LTTRSNSIMDSFCVQQAEDCLSEKSRLNRSSVSKEVFLSLPQPNNSDWIQ 1800
1801 GHTRKEMGQSLDSANTSFTAILSSPDGELVDVACEDLELYVSRNNDMLTP 1850
1851 TPDSSPRSTSSPSQSKNGSFTPRTANILKPLMSPPSREEIMATLLDHDLS 1900
1901 ETIYQEPFCSNPSDVPEKPREIGGRLLMVETRLANDLAEFEGDFSLEGLR 1950
1951 LWKTAFSAMTQNPRPGSPLRSGQGVVNKGSSNSPKMVEDKKIVIMPCKCA 2000
2001 PSRQLVQVWLQAKEEYERSKKLPKTKPTGVVKSAENFSSSVNPDDKPVVP 2050
2051 PKMDVSPCILPTTAHTKEDVDNSQIALQAPTTGCSQTASESQMLPPVASA 2100
2101 SDPEKDEDDDDNYYISYSSPDSPVIPPWQQPISPDSKALNGDDRPSSPVE 2150
2151 ELPSLAFENFLKPIKDGIQKSPCSEPQEPLVISPINTRARTGKCESLCFH 2200
2201 STPIIQRKLLERLPEAPGLSPLSTEPKTQKLSNKKGSNTDTLRRVLLTQA 2250
2251 KNQFAAVNTPQKETSQIDGPSLNNTYGFKVSIQNLQEAKALHEIQNLTLI 2300
2301 SVELHARTRRDLEPDPEFDPICALFYCISSDTPLPDTEKTELTGVIVIDK 2350
2351 DKTVFSQDIRYQTPLLIRSGITGLEVTYAADEKALFHEIANIIKRYDPDI 2400
2401 LLGYEIQMHSWGYLLQRAAALSIDLCRMISRVPDDKIENRFAAERDEYGS 2450
2451 YTMSEINIVGRITLNLWRIMRNEVALTNYTFENVSFHVLHQRFPLFTFRV 2500
2501 LSDWFDNKTDLYRWKMVDHYVSRVRGNLQMLEQLDLIGKTSEMARLFGIQ 2550
2551 FLHVLTRGSQYRVESMMLRIAKPMNYIPVTPSVQQRSQMRAPQCVPLIME 2600
2601 PESRFYSNSVLVLDFQSLYPSIVIAYNYCFSTCLGHVENLGKYDEFKFGC 2650
2651 TSLRVPPDLLYQVRHDITVSPNGVAFVKPSVRKGVLPRMLEEILKTRFMV 2700
2701 KQSMKAYKQDRALSRMLDARQLGLKLIANVTFGYTSANFSGRMPCIEVGD 2750
2751 SIVHKARETLERAIKLVNDTKKWGARVVYGDTDSMFVLLKGATKEQSFKI 2800
2801 GQEIAEAVTATNPKPVKLKFEKVYLPCVLQTKKRYVGYMYETLDQKDPVF 2850
2851 DAKGIETVRRDSCPAVSKILERSLKLLFETRDISLIKQYVQRQCMKLLEG 2900
2901 KASIQDFIFAKEYRGSFSYKPGACVPALELTRKMLTYDRRSEPQVGERVP 2950
2951 YVIIYGTPGVPLIQLVRRPVEVLQDPTLRLNATYYITKQILPPLARIFSL 3000
3001 IGIDVFSWYHELPRIHKATSSSRSEPEGRKGTISQYFTTLHCPVCDDLTQ 3050
3051 HGICSKCRSQPQHVAVILNQEIRELERQQEQLVKICKNCTGCFDRHIPCV 3100
3101 SLNCPVLFKLSRVNRELSKAPYLRQLLDQF 3130

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.