SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O70546 from www.uniprot.org...

The NucPred score for your sequence is 0.75 (see score help below)

   1  MKSCGVSLATAAAAAAAAAFGDEEKKMAAGKASGESEEASPSLTAEEREA    50
51 LGGLDSRLFGFVRFHEDGARMKALLGKAVRCYESLILKAEGKVESDFFCQ 100
101 LGHFNLLLEDYPKALSAYQRYYSLQSDYWKNAAFLYGLGLVYFHYNAFQW 150
151 AIKAFQEVLYVDPSFCRAKEIHLRLGLMFKVNTDYESSLKHFQLALVDCN 200
201 PCTLSNAEIQFHIAHLYETQRKYHSAKEAYEQLLQTENLSAQVKATILQQ 250
251 LGWMHHTVDLLGDKATKESYAIQYLQKSLEADPNSGQSWYFLGRCYSSIG 300
301 KVQDAFISYRQSIDKSEASADTWCSIGVLYQQQNQPMDALQAYICAVQLD 350
351 HGHAAAWMDLGTLYESCNQPQDAIKCYLNATRSKNCSNTSGLAARIKYLQ 400
401 AQLCNLPQGSLQNKTKLLPSIEEAWSLPIPAELTSRQGAMNTAQQNTSDN 450
451 WSGGNAPPPVEQQTHSWCLTPQKLQHLEQLRANRNNLNPAQKLMLEQLES 500
501 QFVLMQQHQMRQTGVAQVRPTGILNGPTVDSSLPTNSVSGQQPQLPLTRM 550
551 PSVSQPGVHTACPRQTLANGPFSAGHVPCSTSRTLGSTDTVLIGNNHVTG 600
601 SGSNGNVPYLQRNAPTLPHNRTNLTSSTEEPWKNQLSNSTQGLHKGPSSH 650
651 LAGPNGERPLSSTGPSQHLQAAGSGIQNQNGHPTLPSNSVTQGAALNHLS 700
701 SHTATSGGQQGITLTKESKPSGNTLTVPETSRQTGETPNSTASVEGLPNH 750
751 VHQVMADAVCSPSHGDSKSPGLLSSDNPQLSALLMGKANNNVGPGTCDKV 800
801 NNIHPTVHTKTDNSVASSPSSAISTATPSPKSTEQTTTNSVTSLNSPHSG 850
851 LHTINGEGMEESQSPIKTDLLLVSHRPSPQIIPSMSVSIYPSSAEVLKAC 900
901 RNLGKNGLSNSSILLDKCPPPRPPSSPYPPLPKDKLNPPTPSIYLENKRD 950
951 AFFPPLHQFCTNPNNPVTVIRGLAGALKLDLGLFSTKTLVEANNEHMVEV 1000
1001 RTQLLQPADENWDPTGTKKIWHCESNRSHTTIAKYAQYQASSFQESLREE 1050
1051 NEKRSHHKDHSDSESTSSDNSGKRRKGPFKTIKFGTNIDLSDDKKWKLQL 1100
1101 HELTKLPAFVRVVSAGNLLSHVGHTILGMNTVQLYMKVPGSRTPGHQENN 1150
1151 NFCSVNINIGPGDCEWFVVPEGYWGVLNDFCEKNNLNFLMGSWWPNLEDL 1200
1201 YEANVPVYRFIQRPGDLVWINAGTVHWVQAIGWCNNIAWNVGPLTACQYK 1250
1251 LAVERYEWNKLQNVKSIVPMVHLSWNMARNIKVSDPKLFEMIKYCLLRTL 1300
1301 KQCQTLREALIAAGKEIIWHGRTKEEPAHYCSICEVEVFDLLFVTNESNS 1350
1351 RKTYIVHCQDCARKTSGNLENFVVLEQYKMEDLMQVYDQFTLAPPLPSAS 1400
1401 S 1401

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.