SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O70608 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MPVRPDPQQLEKCIDDALRKNDFKPLVTLLQIDICEDVKIKCSKQFLRKL    50
51 DDLICRELHKKDIQTISNILISIGRCSKNIFILGQTGLQTMIKQGLVQKM 100
101 VSWFENSKEIILSQRQSKDEAVMNMIEDLFDLLMVVYDVNDEGKNQVLES 150
151 FIPHICALVIDSRVNFCIQQEALKKMNLMLDRIPQDANKILCNQEILTLM 200
201 SNMGERILDVGDYELQVGIVEALCRMTTEKRRQELAYEWFSMDFIANAFK 250
251 KIKDCEFETDCRIFLNLVNGMLGDRRRVFTFPCLSAFLGKYELQIPSDEK 300
301 LEEFWIDFNLGSHTLSFYIAGDDDDHQWEAVTVPEEKVDMYNIEVRESKK 350
351 LLTLTLKNIVKISKKEGKELLLYFDAALEITNVTKKLFGGNKYKEFTRKQ 400
401 DISVAKTSIHVLFDASGSQILVPESQPSPVKENLIHLKEKSNLQKKLTNP 450
451 LEPDNSSSQRDRKNSQDEITTPSRKKMSEASMIVPDTDRYTVRSPILLIN 500
501 TSTPRRSRAPLQAIHSAEKAVSKTSESGVDYAVSLKSRQSDGRNRGNNRA 550
551 NHNKTATVQNKGHEHHESPDQTFNEIEETLSDAYAVEKVDKPVLPGVLDI 600
601 SKNKAHSRWACWTPVTTIKLCNNQRSCALPGDTFTQDTGVNKKCTKQKSV 650
651 SDDDSEETQRVKYSKDVIKCNKSEEAEVCERNIQEQNHPKYSQKKNTANA 700
701 KKNDWHIESETTYKSVLLNKTTEESLIYKKTCVLSKDVNTTICDKSPSRK 750
751 SMRSHTKSRKELMSEVTSCELDEIPVRENSKGKRFTGTAESLINLINKRY 800
801 NSSDDMISTRKLKEPRDGSGFSKKPELQFNKVQRKSYRKLKTVVNVTSEC 850
851 PLNDVYNFSLNGADEPVIKLGIQEFQATTREASMDNSIKLVDVRNRDERD 900
901 LSLKTKDERILSHERKTLFSDTETECGWDDSKTDISWLRKPKSKRLMDYS 950
951 RNKNTKKCKSIKSRSSTEKGQPRSTVVLSKNIAKNDYEVIVDGRTRLPRR 1000
1001 ATKTKKNYKDLSTSGSESESEKEISYLFKDKLPTKEETVHSSAQTKKLPK 1050
1051 KQQKVFNTEALKGQPSEEQKNSSTLRNGREDSLYLSSASVSGSSSSVEVM 1100
1101 RCTEKITERDFTQDYDYITKSLSPYPKAASPEFLNRSNRVVGHGKSPRIS 1150
1151 ETSAVCVRKSCSPASGLPFSPRHTTKNNSVMNIKNTNSVINNQRTQHCNS 1200
1201 YSDVSSNSSEKLYMEPESPDSCENHVQSKREENHAASPFSLSSEKIEKIW 1250
1251 FDMPNDNTHVSGPSQRGSKRRMYLEEDELSNPSEAEVQEAEEREHLVSKK 1300
1301 LCQREHFDQHTSETSLSTPEFSVPKDWQQELQGAGMFYDNINSDYKRKTD 1350
1351 TQHKIMDDFTTKTLKLTQQHLLAMACQARGHRDENIDKFQVTLLDELEKV 1400
1401 EKDSQTLRDLEKEFVDIEEKIVHKMRAFHQSERERFRALKTSLDKSLLVY 1450
1451 NSVYEENVLTSEMCLMKANMKMLQDKLLKEMHEEELLNIRRGLESLFKDH 1500
1501 EGNNA 1505

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.