 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O75691 from www.uniprot.org...
The NucPred score for your sequence is 0.87 (see score help below)
1 MKTKPVSHKTENTYRFLTFAERLGNVNIDIIHRIDRTASYEEEVETYFFE 50
51 GLLKWRELNLTEHFGKFYKEVIDKCQSFNQLVYHQNEIVQSLKTHLQVKN 100
101 SFAYQPLLDLVVQLARDLQMDFYPHFPEFFLTITSILETQDTELLEWAFT 150
151 SLSYLYKYLWRLMVKDMSSIYSMYSTLLAHKKLHIRNFAAESFTFLMRKV 200
201 SDKNALFNLMFLDLDKHPEKVEGVGQLLFEMCKGVRNMFHSCTGQAVKLI 250
251 LRKLGPVTETETQLPWMLIGETLKNMVKSTVSYISKEHFGTFFECLQESL 300
301 LDLHTKVTKTNCCESSEQIKRLLETYLILVKHGSGTKIPTPADVCKVLSQ 350
351 TLQVASLSTSCWETLLDVISALILGENVSLPETLIKETIEKIFESRFEKR 400
401 LIFSFSEVMFAMKQFEQLFLPSFLSYIVNCFLIDDAVVKDEALAILAKLI 450
451 LNKAAPPTAGSMAIEKYPLVFSPQMVGFYIKQKKTRSKGRNEQFPVLDHL 500
501 LSIIKLPPNKDTTYLSQSWAALVVLPHIRPLEKEKVIPLVTGFIEALFMT 550
551 VDKGSFGKGNLFVLCQAVNTLLSLEESSELLHLVPVERVKNLVLTFPLEP 600
601 SVLLLTDLYYQRLALCGCKGPLSQEALMELFPKLQANISTGVSKIRLLTI 650
651 RILNHFDVQLPESMEDDGLSERQSVFAILRQAELVPATVNDYREKLLHLR 700
701 KLRHDVVQTAVPDGPLQEVPLRYLLGMLYINFSALWDPVIELISSHAHEM 750
751 ENKQFWKVYYEHLEKAATHAEKELQNDMTDEKSVGDESWEQTQEGDVGAL 800
801 YHEQLALKTDCQERLDHTNFRFLLWRALTKFPERVEPRSRELSPLFLRFI 850
851 NNEYYPADLQVAPTQDLRRKGKGMVAEEIEEEPAAGDDEELEEEAVPQDE 900
901 SSQKKKTRRAAAKQLIAHLQVFSKFSNPRALYLESKLYELYLQLLLHQDQ 950
951 MVQKITLDCIMTYKHPHVLPYRENLQRLLEDRSFKEEIVHFSISEDNAVV 1000
1001 KTAHRADLFPILMRILYGRMKNKTGSKTQGKSASGTRMAIVLRFLAGTQP 1050
1051 EEIQIFLDLLFEPVRHFKNGECHSAVIQAVEDLDLSKVLPLGRQHGILNS 1100
1101 LEIVLKNISHLISAYLPKILQILLCMTATVSHILDQREKIQLRFINPLKN 1150
1151 LRRLGIKMVTDIFLDWESYQFRTEEIDAVFHGAVWPQISRLGSESQYSPT 1200
1201 PLLKLISIWSRNARYFPLLAKQKPGHPECDILTNVFAILSAKNLSDATAS 1250
1251 IVMDIVDDLLNLPDFEPTETVLNLLVTGCVYPGIAENIGESITIGGRLIL 1300
1301 PHVPAILQYLSKTTISAEKVKKKKNRAQVSKELGILSKISKFMKDKEQSS 1350
1351 VLITLLLPFLHRGNIAEDTEVDILVTVQNLLKHCVDPTSFLKPIAKLFSV 1400
1401 IKNKLSRKLLCTVFETLSDFESGLKYITDVVKLNAFDQRHLDDINFDVRF 1450
1451 ETFQTITSYIKEMQIVDVNYLIPVMHNCFYNLELGDMSLSDNASMCLMSI 1500
1501 IKKLAALNVTEKDYREIIHRSLLEKLRKGLKSQTESIQQDYTTILSCLIQ 1550
1551 TFPNQLEFKDLVQLTHYHDPEMDFFENMKHIQIHRRARALKKLAKQLMEG 1600
1601 KVVLSSKSLQNYIMPYAMTPIFDEKMLKHENITTAATEIIGAICKHLSWS 1650
1651 AYMYYLKHFIHVLQTGQINQKLGVSLLVIVLEAFHFDHKTLEEQMGKIEN 1700
1701 EENAIEAIELPEPEAMELERVDEEEKEYTCKSLSDNGQPGTPDPADSGGT 1750
1751 SAKESECITKPVSFLPQNKEEIERTIKNIQGTITGDILPRLHKCLASTTK 1800
1801 REEEHKLVKSKVVNDEEVVRVPLAFAMVKLMQSLPQEVMEANLPSILLKV 1850
1851 CALLKNRAQEIRDIARSTLAKIIEDLGVHFLLYVLKELQTTLVRGYQVHV 1900
1901 LTFTVHMLLQGLTNKLQVGDLDSCLDIMIEIFNHELFGAVAEEKEVKQIL 1950
1951 SKVMEARRSKSYDSYEILGKFVGKDQVTKLILPLKEILQNTTSLKLARKV 2000
2001 HETLRRITVGLIVNQEMTAESILLLSYGLISENLPLLTEKEKNPVAPAPD 2050
2051 PRLPPQSCLLLPPTPVRGGQKAVVSRKTNMHIFIESGLRLLHLSLKTSKI 2100
2101 KSSGECVLEMLDPFVSLLIDCLGSMDVKVITGALQCLIWVLRFPLPSIET 2150
2151 KAEQLTKHLFLLLKDYAKLGAARGQNFHLVVNCFKCVTILVKKVKSYQIT 2200
2201 EKQLQVLLAYAEEDIYDTSRQATAFGLLKAILSRKLLVPEIDEVMRKVSK 2250
2251 LAVSAQSEPARVQCRQVFLKYILDYPLGDKLRPNLEFMLAQLNYEHETGR 2300
2301 ESTLEMIAYLFDTFPQGLLHENCGMFFIPLCLMTINDDSATCKKMASMTI 2350
2351 KSLLGKISLEKKDWLFDMVTTWFGAKKRLNRQLAALICGLFVESEGVDFE 2400
2401 KRLGTVLPVIEKEIDPENFKDIMEETEEKAADRLLFSFLTLITKLIKECN 2450
2451 IIQFTKPAETLSKIWSHVHSHLRHPHNWVWLTAAQIFGLLFASCQPEELI 2500
2501 QKWNTKKTKKHLPEPVAIKFLASDLDQKMKSISLASCHQLHSKFLDQSLG 2550
2551 EQVVKNLLFAAKVLYLLELYCEDKQSKIKEDLEEQEALEDGVACADEKAE 2600
2601 SDGEEKEEVKEELGRPATLLWLIQKLSRIAKLEAAYSPRNPLKRTCIFKF 2650
2651 LGAVAMDLGIDKVKPYLPMIIAPLFRELNSTYSEQDPLLKNLSQEIIELL 2700
2701 KKLVGLESFSLAFASVQKQANEKRALRKKRKALEFVTNPDIAAKKKMKKH 2750
2751 KNKSEAKKRKIEFLRPGYKAKRQKSHSLKDLAMVE 2785
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.