SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O75747 from www.uniprot.org...

The NucPred score for your sequence is 0.82 (see score help below)

   1  MAYSWQTDPNPNESHEKQYEHQEFLFVNQPHSSSQVSLGFDQIVDEISGK    50
51 IPHYESEIDENTFFVPTAPKWDSTGHSLNEAHQISLNEFTSKSRELSWHQ 100
101 VSKAPAIGFSPSVLPKPQNTNKECSWGSPIGKHHGADDSRFSILAPSFTS 150
151 LDKINLEKELENENHNYHIGFESSIPPTNSSFSSDFMPKEENKRSGHVNI 200
201 VEPSLMLLKGSLQPGMWESTWQKNIESIGCSIQLVEVPQSSNTSLASFCN 250
251 KVKKIRERYHAADVNFNSGKIWSTTTAFPYQLFSKTKFNIHIFIDNSTQP 300
301 LHFMPCANYLVKDLIAEILHFCTNDQLLPKDHILSVCGSEEFLQNDHCLG 350
351 SHKMFQKDKSVIQLHLQKSREAPGKLSRKHEEDHSQFYLNQLLEFMHIWK 400
401 VSRQCLLTLIRKYDFHLKYLLKTQENVYNIIEEVKKICSVLGCVETKQIT 450
451 DAVNELSLILQRKGENFYQSSETSAKGLIEKVTTELSTSIYQLINVYCNS 500
501 FYADFQPVNVPRCTSYLNPGLPSHLSFTVYAAHNIPETWVHSYKAFSFTC 550
551 WLTYAGKKLCQVRNYRNIPDKKLFFFLVNWNETINFPLEIKSLPRESMLT 600
601 VKLFGIACATNNANLLAWTCLPLFPKEKSILGSMLFSMTLQSEPPVEMIT 650
651 PGVWDVSQPSPVTLQIDFPATGWEYMKPDSEENRSNLEEPLKECIKHIAR 700
701 LSQKQTPLLLSEEKKRYLWFYRFYCNNENCSLPLVLGSAPGWDERTVSEM 750
751 HTILRRWTFSQPLEALGLLTSSFPDQEIRKVAVQQLDNLLNDELLEYLPQ 800
801 LVQAVKFEWNLESPLVQLLLHRSLQSIQVAHRLYWLLKNAENEAYFKSWY 850
851 QKLLAALQFCAGKALNDEFSKEQKLIKILGDIGERVKSASDHQRQEVLKK 900
901 EIGRLEEFFQDVNTCHLPLNPALCIKGIDHDACSYFTSNALPLKITFINA 950
951 NPMGKNISIIFKAGDDLRQDMLVLQLIQVMDNIWLQEGLDMQMIIYRCLS 1000
1001 TGKDQGLVQMVPDAVTLAKIHRHSGLIGPLKENTIKKWFSQHNHLKADYE 1050
1051 KALRNFFYSCAGWCVVTFILGVCDRHNDNIMLTKSGHMFHIDFGKFLGHA 1100
1101 QTFGGIKRDRAPFIFTSEMEYFITEGGKNPQHFQDFVELCCRAYNIIRKH 1150
1151 SQLLLNLLEMMLYAGLPELSGIQDLKYVYNNLRPQDTDLEATSHFTKKIK 1200
1201 ESLECFPVKLNNLIHTLAQMSAISPAKSTSQTFPQESCLLSTTRSIERAT 1250
1251 ILGFSKKSSNLYLIQVTHSNNETSLTEKSFEQFSKLHSQLQKQFASLTLP 1300
1301 EFPHWWHLPFTNSDHRRFRDLNHYMEQILNVSHEVTNSDCVLSFFLSEAV 1350
1351 QQTVEESSPVYLGEKFPDKKPKVQLVISYEDVKLTILVKHMKNIHLPDGS 1400
1401 APSAHVEFYLLPYPSEVRRRKTKSVPKCTDPTYNEIVVYDEVTELQGHVL 1450
1451 MLIVKSKTVFVGAINIRLCSVPLDKEKWYPLGNSII 1486

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.