 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O88280 from www.uniprot.org...
The NucPred score for your sequence is 0.83 (see score help below)
1 MAPGRTGAGAAVRARLALALALASILSGPPAAACPTKCTCSAASVDCHGL 50
51 GLRAVPRGIPRNAERLDLDRNNITRITKMDFTGLKNLRVLHLEDNQVSVI 100
101 ERGAFQDLKQLERLRLNKNKLQVLPELLFQSTPKLTRLDLSENQIQGIPR 150
151 KAFRGVTGVKNLQLDNNHISCIEDGAFRALRDLEILTLNNNNISRILVTS 200
201 FNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRQRRTIGQFTLCMAPVHLRG 250
251 FSVADVQKKEYVCPGPHSEAPACNANSLSCPSACSCSNNIVDCRGKGLTE 300
301 IPANLPEGIVEIRLEQNSIKSIPAGAFIQYKKLKRIDISKNQISDIAPDA 350
351 FQGLKSLTSLVLYGNKITEIPKGLFDGLVSLQLLLLNANKINCLRVNTFQ 400
401 DLQNLNLLSLYDNKLQTISKGLFAPLQSIQTLHLAQNPFVCDCHLKWLAD 450
451 YLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRNRFSSECF 500
501 MDLVCPEKCRCEGTIVDCSNQKLSRIPSHLPEYTTDLRLNDNDIAVLEAT 550
551 GIFKKLPNLRKINLSNNRIKEVREGAFDGAAGVQELMLTGNQLETMHGRM 600
601 FRGLSGLKTLMLRSNLISCVNNDTFAGLSSVRLLSLYDNRITTISPGAFT 650
651 TLVSLSTINLLSNPFNCNCHMAWLGRWLRKRRIVSGNPRCQKPFFLKEIP 700
701 IQDVAIQDFTCEGNEENSCQLSPRCPEQCTCVETVVRCSNRGLHTLPKGM 750
751 PKDVTELYLEGNHLTAVPKELSTFRQLTLIDLSNNSISMLTNHTFSNMSH 800
801 LSTLILSYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLS 850
851 HLALGINPLHCDCSLRWLSEWIKAGYKEPGIARCSSPESMADRLLLTTPT 900
901 HRFQCKGPVDINIVAKCNACLSSPCKNNGTCSQDPVEQYRCTCPYSYKGK 950
951 DCTVPINTCVQNPCQHGGTCHLSESHRDGFSCSCPLGFEGQRCEINPDDC 1000
1001 EDNDCENSATCVDGINNYACVCPPNYTGELCDEVIDYCVPEMNLCQHEAK 1050
1051 CISLDKGFRCECVPGYSGKLCETDNDDCVAHKCRHGAQCVDAVNGYTCIC 1100
1101 PQGFSGLFCEHPPPMVLLQTSPCDQYECQNGAQCIVVQQEPTCRCPPGFA 1150
1151 GPRCEKLITVNFVGKDSYVELASAKVRPQANISLQVATDKDNGILLYKGD 1200
1201 NDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHSVELVMLNQTL 1250
1251 NLVVDKGAPKSLGKLQKQPAVGINSPLYLGGIPTSTGLSALRQGADRPLG 1300
1301 GFHGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCRHGLCRSVEKDS 1350
1351 VVCECHPGWTGPLCDQEAQDPCLGHSCSHGTCVATGNSYVCKCAEGYEGP 1400
1401 LCDQKNDSANACSAFKCHHGQCHISDRGEPYCLCQPGFSGNHCEQENPCL 1450
1451 GEIVREAIRRQKDYASCATASKVPIMVCRGGCGSQCCQPIRSKRRKYVFQ 1500
1501 CTDGSSFVEEVERHLECGCRECS 1523
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.