| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O88700 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAAVPLNNLQEQLQRHSARKLNNQPSLSKPKSLGFTFKKKTSEGDVSVTS 50
51 VSVVKTPALSDKDVNVSEAFSFTESPLHKPKQQAKIEGFFKHFPGRQQSK 100
101 GTCSEPSLPATVQTAQDTLCTTPKTPTAKKLPVAVFKKLEFSSSADSLSD 150
151 WADMDDFDMSASDAFASLAKNPATRVSTAQKMKKTKRNFFKPPPRKANAV 200
201 KTDLTPPSPECLQVDLTKESEEEEEEEEEAEGADCLSRDVICIDNDSASE 250
251 ELTEKDTQESQSLKAHLGAERGDSEKKSHEDEAVFHSVQNTEYFEHNDND 300
301 YDIDFVPPSPEEIISTASSSLKCSSMLKDLDDSDKEKGILSTSEELLSKP 350
351 EEMTTHKSDAGTSKDCDAQQIRIQQQLIHVMEHICKLVDTVPTDELEALN 400
401 CGTELLQQRNIRRKLLAEAGFNGNDVRLLGSLWRHRPDSLDNTVQGDSCP 450
451 VGHPNKELNSPYLLSHSPSTEECLPTTTPGKTGFSATPKNLFERPLLNSH 500
501 LQKSFVSSNWAETPRMENRNESTDFPGSVLTSTTVKAQSKQAASGWNVER 550
551 HGQASYDIDNFNIDDFDDDDDDDDWENIMHNFPASKSSTATYPPIKEGGP 600
601 VKSLSERISSAKAKFLPVVSTAQNTNLSESIQNCSDKLAQNLSSKNPKHE 650
651 HFQSLNFPHTKEMMKIFHKKFGLHNFRTNQLEAINAALLGEDCFILMPTG 700
701 GGKSLCYQLPACVSPGVTIVISPLRSLIVDQVQKLTSFDIPATYLTGDKT 750
751 DSEAANIYLQLSKKDPIIKLLYVTPEKVCASNRLISTLENLYERKLLARF 800
801 VIDEAHCVSQWGHDFRQDYKRMNMLRQKFPSVPVMALTATANPRVQKDIL 850
851 TQLKILRPQVFSMSFNRHNLKYYVLPKKPKKVAFDCLEWIRKHHPYDSGI 900
901 IYCLSRRECDTMADTLQREGLAALAYHAGLSDSARDEVQHKWINQDNCQV 950
951 ICATIAFGMGIDKPDVRFVIHASLPKSMEGYYQESGRAGRDGEISHCVLF 1000
1001 YTYHDVTRLKRLIMMEKDGNYHTKETHVNNLYSMVHYCENITECRRIQLL 1050
1051 AYFGEKGFNPDFCKKYPDVSCDNCCKTKDYKTKDVTDDVKNIIRFVQEHS 1100
1101 SSPGTRNIGPAGRFTLNMLVDIFLGSKSAKVKSGIFGKGTTYSRHNAERL 1150
1151 FKKLILDKILDEDLYINANDQPIAYVMLGTKAHSVLSGHLKVDFMETENS 1200
1201 SSIKKQKALVAKVSQREEVVKKCLGELTEVCKLLGKVFGVHYFNIFNTAT 1250
1251 LKKLAESLSSDPEVLLQIDGVTEDKLEKYGAEVIPVLQKYSEWTVPAEDG 1300
1301 SPGARGAPEDTEEEEEEAPVSSHYFANQTRNERKRKKMSATHKPKRRRTS 1350
1351 YGGFRAKGGSTTCRKTTSKSKFYGVTGSRSASCASQATSSASRKLGIMAP 1400
1401 PKPVNRTFLRPSYAFS 1416
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.