SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O93794 from www.uniprot.org...

The NucPred score for your sequence is 0.82 (see score help below)

   1  MSEPKTASERYQKISQLEHILKRPDTYIGSVEIQEQEQWIYDEETDCMID    50
51 KTVNIVPGLFKIFDEILVNAADNKVRDPSMKRIDVTINPEENFIEVRNDG 100
101 KGIPIEIHEKEKIYIPELIFGHLLTSSNYDDDEKKVTGGRNGYGAKLCNI 150
151 FSTEFTLETADPKNGRKYVQTWENNMNVCHPPKITSYKKGPSYTKVAFKP 200
201 DLSRFGMESLDSDILGVMRRRVYDINGSVRDVNVYLNGKPLKIRNFKNYV 250
251 ELYLKSLEKMRKMDNGESDTTPSNIPTILYERVSDRWEIAFAVSDISFKQ 300
301 VSFVNSIATTTGGTHVNYIADQIVRKVSDILKKKKKNIKPYQIKNNMFIF 350
351 INCLIENPAFTSQTKEQLTTRVKDFGSRCDISSDYINKIMKTDLATKIFE 400
401 IADENANNALKKSDGSRKSRITDYPKLEDANKAGTKDGYKCTLILTEGDS 450
451 ALSLAVAGLAVVGRDYYGCYPLRGKMLNVREATADQILKNAEIQAIKKIM 500
501 GLQHRKKYEDTKSLRYGHLMIMTDQDHDGSHIKGLIINFIETSFPGLLDI 550
551 PGFLIEFITPIVKVTITKPIKKVISFFNLPDYEKWREEESHKYSWKQKYY 600
601 KGLGTSTSPEIIEYFSNLDTHLKKFHALQGDDKDLIDLAFSKKKADDRKE 650
651 WLRQYEPGTVLDPTLNEIPISDFINKELILFSLADNVRSIPSVLDGFKPG 700
701 QRKVLYTCFKKNLTTEKKVANLAPAVSDYTAYHHGEQALVQTIIGMAQNF 750
751 VGTNNIYFLKPNGAFGTRATGGKDAAAARYIYTELNKIARKVFHPADDPL 800
801 FRYVQEDEKTVEPEWYLPVVPMVLINGAEGIGTGWSTSIPPFNPLDVVNN 850
851 IRHLLNDEEMDDMHPWFRGWTGTMEKIESQRYRMYGRIEQVGPNTLEITE 900
901 LPARTWTSTIKEHLLLGLGGSEKVKPWIKDMEEQHAETIKFIIKLTDEEM 950
951 TKTRKLGFYERFKLISPISLQNMVAFDYRGKIKKYDHVHEILKDFYEVRL 1000
1001 EYYQKRKDYMTGRLQWEAEKLSFQVKFIKMIIDKSLIVTNKPKKQLISEL 1050
1051 EELGFPRINKEGKPHFGKIDEEVEAIISEDEDEDLEESEEATRKKDKDDE 1100
1101 STVNGPEELFGTYEYLLGLKIWSLTKERYEKLLKQKQEKETELENLLKLS 1150
1151 AKDLWNNDLDDFLTAYEDFQKMDLFLRNSAVPKTKGGKRKRKGGDDDDYD 1200
1201 PSGKKKPARRIKKIKKEDDFDRILIKPQAKIKAKRPVKVKVEPPSSAAST 1250
1251 PSVKEELGVSDVTSNASTPSTTIFDQKVKQENSDESGISAFSSKFNKIAS 1300
1301 AFDEDAPLDQITSEDTSVKESSAPAAKKKAPPKRKAKVVESSEDELSDAN 1350
1351 LSEQDDEEVVPVRRQRSSRQTAKKSYAEPIEISDEEDFIDDDEDEEVDSD 1400
1401 ESFNDE 1406

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.