SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O94477 from www.uniprot.org...

The NucPred score for your sequence is 0.86 (see score help below)

   1  MTSGIYYKGLQCWIPDEQSQWIPGSIKDCRVEGEKAFLTVQDENENETVI    50
51 TVKPDDLNYEGRNGLPFLRSINSDADDLTDLSYLNEPSVLDALSTRYNQL 100
101 QIYTYSGIVLIAVNPFQRLPNLYTHEIVRAYSEKSRDELDPHLYAIAEDS 150
151 YKCMNQEHKNQTIIISGESGAGKTVSARYIMRYFASVQALIQSTDSNFHE 200
201 APQLTAVENEILATNPIMEAFGNSKTSRNDNSSRFGKYIQILFDGNATII 250
251 GAKIQTYLLERSRLVFQPNQERNYHIFYQILAGSSSEQLEKWKLVENSQE 300
301 FNYLKQGNCSTIEGVNDKEEFKATVDALKTVGIDNDTCECIFSLLAALLH 350
351 IGNIEVKHSRNDAYIDSKNENLINATSLLGVDPSSLVKWLTKRKIKMASE 400
401 GILKPLNEFQAVVARDSVAKFLYASLFDWLVATINKALMYSADKSNQTAK 450
451 SFIGVLDIYGFEHFKKNSFEQFCINYANEKLQQEFYRHVFKLEQEEYAAE 500
501 GLNWSYIDYQDNQQCISMIESRLGILSLLDEECRMPTNSDENWVSKLNDA 550
551 FSKPEFKNSYQKSRFGNKEFTIKHYALDVVYCAEGFIDKNRDTISDELLE 600
601 LFTNSDVPFVKDLVLFRLEQTAPPADTKKIKTKPKSNTLGSMFKSSLVSL 650
651 MSTINETNAHYIRCIKPNEEKEAWKFDNQMVVSQLRACGVLETIKISCAG 700
701 FPSRWTFDEFVSRYYMLVPSAVRTTESLTFSKAILEKHADPTKYQIGKTK 750
751 IFFRSGVTPLLESARDKALKHAAHLLYEAFAVNYYRTRFLLSRKRVRSFQ 800
801 AVAHGFLSRRHTEYELLSSNIIKLQSLWRTALKRKEFIQTKNSILKVQSI 850
851 IRGFLLRQTLEEKTKHDATLIIQSLWLTFKAHKHYKELQYYAVRIQSLWR 900
901 MKLAKRQLTELKIESTKASHLKQVSYRLESRLFEISKQLDNSEQENNKFR 950
951 ERIAELESHLSNYAEAKLAQERELEQTRVLISDQSQDGELKELLEEKENA 1000
1001 LIMMEEEMRQVNDANTELLRVNATLKSQLKNYDMIIVEQTSQLKEKNRII 1050
1051 ASLTKATKILNSASSIEQSRNSEEKSRRDSSLMEMRTQKEMLVLLMNDGL 1100
1101 KHDLDKLTEYAGRTFTTLKTLLLKDNDVEAQKLDHLFLAKLLFIIISQMW 1150
1151 KSNLCQESVALVERYCVHTLEYVFQKTSSANERPDIGFWVANTHALLAFV 1200
1201 YTKQQAFKHSSAFTLLSTESHESVQTIFEMIESHLSKIFFEWVRQVNNFL 1250
1251 KPLIVQAMIITGTNTDAGDENRKLRIKFFEKPKYKITDVIHVLNKVHDSC 1300
1301 QAYKVNYEIYNALIRSIYRFINVEAFNSLFIDERGSWKRGTNISYNYHVL 1350
1351 KDWCLESGVPEAYLQLEELLQTSKILQFVKDDPNYVARVRDFYALNFLQI 1400
1401 KTLLHRYDYADYEAHVPKKTMSELSKNIVAEGINQREQLTYEVLDYRLQD 1450
1451 SFEESPSLEKIKIPDDCNVTYLRRIIDLASAEESVEQALITVGNVADNDV 1500
1501 QNSSDEENQVPNGIKV 1516

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.