SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching O94532 from www.uniprot.org...

The NucPred score for your sequence is 0.94 (see score help below)

   1  MASKMPEGSPPTSRSIQSRNSSYSTSSNERIGTPSTISLSENSDLSKLQS    50
51 TNDFESREDLSLTSDDNNDPEYVMCYNTVYHQKTKINDKLLSETEQLRKI 100
101 YPLESRVFPKPTIVKEITNERTKRYTFYDDDAPLTNQHTVLDEATYNRIL 150
151 KRIDFFIEKVVEVPPTYHFLSLLNVQLRIQPIWWMDEFAERNGIESLLSA 200
201 LRNLGHYPERASKTPLESQIIQSLFHCLNSENCRRRYQSSAKCSVPGFNA 250
251 LGTIAETVLSKSLNSARMATFLLKFLCNKKGLSYFKAVIRAFEWLVEQKL 300
301 SKTRFSAWMHSFNDVITGVRVCADSSPQAIVHMDEFEDTDCLIDYLVATL 350
351 ALIRDLCAAPPDLQLRCALRHELLSAGLQKAIDSLLKWRNRHVRDALQLL 400
401 IKEHNADARRFRSGSDVNNVDRKCVKKQMNYREESHTPHGNTTRKTSTPV 450
451 SNNRPTTPEQQAVWDVFQRIYTRFTGSEGSKESFIKLLEYFVTEPDNGKI 500
501 QKSMQLLTHTLEALEGFKTAKADTNVGLTILSQRLLDKLGTAEEIAEYKT 550
551 KYNGAMLENKHLKEQVESMLSQLNVGPRDPMQFLKKQLDELKAELNLRDN 600
601 LLASMQREFETRYRAQIQAYNKLQSQMEHVQNSNEQHLQPGLLNKVSKSF 650
651 DSVHRRNLSQDSLDAMTEQFSYHVEPNILSGSGIPVRVHTPSKTEDLDES 700
701 FSGSEISSSPSPLLPDVSDTVEEQQKLLLKSPPPPPPAVIVPTPAPAPIP 750
751 VPPPAPIMGGPPPPPPPPGVAGAGPPPPPPPPPAVSAGGSRYYAPAPQAE 800
801 PEPKIDETSLTEEQKIQLEEARKQRKAADDAARAAIEKYTSIPSLRDLHK 850
851 PTRPLKRVHWQRVDPLPGPNVFTKFCLNFDITAKVFIDNGLLDFLDEKFD 900
901 NTPREDFVAVEISDQRSSLLPDTVEQNMAIILRSVSNMPVEDLVQKFLVE 950
951 PDFLPASILYFDRASLASTNAYTDPFIPYSTDYTKKNPKEPTADVNSLSY 1000
1001 FEKFFVLFVVNLRHYFQERMKALKFRSTLFGDLEILEVRMKEVIDTSDSI 1050
1051 MEDKNFAEFFQVLLIIGNYFNEPYDRASAFSLYMIYRLETLRDSSSALTL 1100
1101 MHYFDEIIRTRFPELLQAESTFKKIQSVSGYNIDAMVAGVDGAYDEFCDF 1150
1151 QTSLKDGALSKCDQHHPDDKAYDILSEWLPEAKERIRNIKKLKTDMLTKL 1200
1201 ENTVKYLCEYDSIDKVRNSFFKNLNSFYEMYSIAKAENEERFEKEKRRIM 1250
1251 SEDRDKLIRGRQKTSIVAKYRNKRELPEDSDDKQDTASKDKNSLETIDEK 1300
1301 MEDASKIEGDAKTGDDNEMEDLDKMEDLEKPDYAEEKDPYITVMSELRSR 1350
1351 IQNVPKRTVTVYSDEGVATLEPGAQGDDVVDKAKMILEKMEGHSQLLTSS 1400
1401 ANPDEEVLRAKLKAAERLQKPAIPRTRRKGHTEPKSAKSLLAELTNGSNA 1450
1451 SNLVENDRQKQ 1461

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.