| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O94679 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MSLDLLSRLKKYIHDEENSDLDSIYAECENAGLTAVVNDVIDTLLLGTSS 50
51 CFDEDCLEKLFAICSHFADLSSSVRNKVYDLLTSNISSESAILEDMISAN 100
101 ATDFTVPQTNLETTGIAFQLTVNSLSSSNQLSVIRSSTNTVKGRKKNPTT 150
151 NSNWNGISHVNALLDAIITLFQKKLSRVWTTSSERDMFLSLFLKPIYTLM 200
201 ESEINIKNASFRSRLFNIIGLAVQFHNHTTAAETNIIQNLQYFEHLSEYA 250
251 ADLVHIVTVQFNSVTLAEGIIRTLCSLEFNDNDVKGPKQVALFLVRLSSL 300
301 IPNLCLKQLTQLVKLLDSESYTLRCAIIEVLANVVIDQIHDEAQNEMSES 350
351 VPATVQSLMDLLSERLLDISPYCRTKVLHVFIKIFDLPIKYPRKRQEIAE 400
401 LVIRCLQDRSSHVRRNAIKLFSKLLTTHPFSVMHNGLLTRNIWEKGLSII 450
451 EEQLNSLQPKQQEKVVDSELEVDENLLEDATMIQDDESHEGESHLENSLS 500
501 EYVDSVPAEEIVKVNLTKRFYLEALQYIDIVEAGAKIISQLLFAKNKSEV 550
551 IESMDFFVFCNSFGISSSKLYIKKMIHLIWVKGTSDEGNNIQNHVLSCYK 600
601 TLFFEPPPNSGTNEAANYIARNLISLTYDASLAELTSLEQMLCILMKDGY 650
651 FSHLVITKLWQVYSYQKKDISRTQRRGSIIVIGMLALGNTDVVMQGLDHL 700
701 IQIGLGPPGLEDLVLARYTCIAIKRIGKDASGSSNINFPNSHTLCQKLCM 750
751 LLLRPSFSEEWFGLEEQAIEAIYAVAKHPDELCTNIILLLTKQLFKPSNH 800
801 ENTTSNDDHAMDEDLDDSPEEETLKDEEEIGIRLAHLIFLVGHVAIKQLV 850
851 YIEYCEAEFKRRKADAERLAVQNSNNPINGQETSEYDLITGTSEDDFSEA 900
901 MTFIRERELLYGENSLLSRFAPLVVELCSNHKSHNNQSLLLAASLTLSKF 950
951 MCLSNNFCMEHLPLLITILEKCDNPIIRNNLVIGLADLTVCFNHFIDEIS 1000
1001 EYLYRRLMDEESSVKKTCFMTLAFLILAGQIKVKGQLGIMARSLEDEDAR 1050
1051 ISDLARMFFTDFAAKDNSVYNNFIDIFSVLSRSAEEQDEDDAKFKRIIRF 1100
1101 LTSFIEKERHTKQLAERLAARLDRCKTQRQWDHVVYALSLLPHKADNIQK 1150
1151 LIDDGYHE 1158
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.