 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O94823 from www.uniprot.org...
The NucPred score for your sequence is 0.91 (see score help below)
1 MALSVDSSWHRWQWRVRDGFPHCPSETTPLLSPEKGRQSYNLTQQRVVFP 50
51 NNSIFHQDWEEVSRRYPGNRTCTTKYTLFTFLPRNLFEQFHRWANLYFLF 100
101 LVILNWMPSMEVFHREITMLPLAIVLFVIMIKDGMEDFKRHRFDKAINCS 150
151 NIRIYERKEQTYVQKCWKDVRVGDFIQMKCNEIVPADILLLFSSDPNGIC 200
201 HLETASLDGETNLKQRCVVKGFSQQEVQFEPELFHNTIVCEKPNNHLNKF 250
251 KGYMEHPDQTRTGFGCESLLLRGCTIRNTEMAVGIVIYAGHETKAMLNNS 300
301 GPRYKRSKIERRMNIDIFFCIGILILMCLIGAVGHSIWNGTFEEHPPFDV 350
351 PDANGSFLPSALGGFYMFLTMIILLQVLIPISLYVSIELVKLGQVFFLSN 400
401 DLDLYDEETDLSIQCRALNIAEDLGQIQYIFSDKTGTLTENKMVFRRCTI 450
451 MGSEYSHQENAKRLETPKELDSDGEEWTQYQCLSFSARWAQDPATMRSQK 500
501 GAQPLRRSQSARVPIQGHYRQRSMGHRESSQPPVAFSSSIEKDVTPDKNL 550
551 LTKVRDAALWLETLSDSRPAKASLSTTSSIADFFLALTICNSVMVSTTTE 600
601 PRQRVTIKPSSKALGTSLEKIQQLFQKLKLLSLSQSFSSTAPSDTDLGES 650
651 LGANVATTDSDERDDASVCSGGDSTDDGGYRSSMWDQGDILESGSGTSLE 700
701 EALEAPATDLARPEFCYEAESPDEAALVHAAHAYSFTLVSRTPEQVTVRL 750
751 PQGTCLTFSLLCTLGFDSVRKRMSVVVRHPLTGEIVVYTKGADSVIMDLL 800
801 EDPACVPDINMEKKLRKIRARTQKHLDLYARDGLRTLCIAKKVVSEEDFR 850
851 RWASFRREAEASLDNRDELLMETAQHLENQLTLLGATGIEDRLQEGVPDT 900
901 IATLREAGIQLWVLTGDKQETAVNIAHSCRLLNQTDTVYTINTENQETCE 950
951 SILNCALEELKQFRELQKPDRKLFGFRLPSKTPSITSEAVVPEAGLVIDG 1000
1001 KTLNAIFQGKLEKKFLELTQYCRSVLCCRSTPLQKSMIVKLVRDKLRVMT 1050
1051 LSIGDGANDVSMIQAADIGIGISGQEGMQAVMSSDFAITRFKHLKKLLLV 1100
1101 HGHWCYSRLARMVVYYLYKNVCYVNLLFWYQFFCGFSSSTMIDYWQMIFF 1150
1151 NLFFTSLPPLVFGVLDKDISAETLLALPELYKSGQNSECYNLSTFWISMV 1200
1201 DAFYQSLICFFIPYLAYKGSDIDVFTFGTPINTISLTTILLHQAMEMKTW 1250
1251 TIFHGVVLLGSFLMYFLVSLLYNATCVICNSPTNPYWVMEGQLSNPTFYL 1300
1301 VCFLTPVVALLPRYFFLSLQGTCGKSLISKAQKIDKLPPDKRNLEIQSWR 1350
1351 SRQRPAPVPEVARPTHHPVSSITGQDFSASTPKSSNPPKRKHVEESVLHE 1400
1401 QRCGTECMRDDSCSGDSSAQLSSGEHLLGPNRIMAYSRGQTDMCRCSKRS 1450
1451 SHRRSQSSLTI 1461
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.