| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching O95071 from www.uniprot.org...
The NucPred score for your sequence is 0.95 (see score help below)
1 MTSIHFVVHPLPGTEDQLNDRLREVSEKLNKYNLNSHPPLNVLEQATIKQ 50
51 CVVGPNHAAFLLEDGRVCRIGFSVQPDRLELGKPDNNDGSKLNSNSGAGR 100
101 TSRPGRTSDSPWFLSGSETLGRLAGNTLGSRWSSGVGGSGGGSSGRSSAG 150
151 ARDSRRQTRVIRTGRDRGSGLLGSQPQPVIPASVIPEELISQAQVVLQGK 200
201 SRSVIIRELQRTNLDVNLAVNNLLSRDDEDGDDGDDTASESYLPGEDLMS 250
251 LLDADIHSAHPSVIIDADAMFSEDISYFGYPSFRRSSLSRLGSSRVLLLP 300
301 LERDSELLRERESVLRLRERRWLDGASFDNERGSTSKEGEPNLDKKNTPV 350
351 QSPVSLGEDLQWWPDKDGTKFICIGALYSELLAVSSKGELYQWKWSESEP 400
401 YRNAQNPSLHHPRATFLGLTNEKIVLLSANSIRATVATENNKVATWVDET 450
451 LSSVASKLEHTAQTYSELQGERIVSLHCCALYTCAQLENSLYWWGVVPFS 500
501 QRKKMLEKARAKNKKPKSSAGISSMPNITVGTQVCLRNNPLYHAGAVAFS 550
551 ISAGIPKVGVLMESVWNMNDSCRFQLRSPESLKNMEKASKTTEAKPESKQ 600
601 EPVKTEMGPPPSPASTCSDASSIASSASMPYKRRRSTPAPKEEEKVNEEQ 650
651 WSLREVVFVEDVKNVPVGKVLKVDGAYVAVKFPGTSSNTNCQNSSGPDAD 700
701 PSSLLQDCRLLRIDELQVVKTGGTPKVPDCFQRTPKKLCIPEKTEILAVN 750
751 VDSKGVHAVLKTGNWVRYCIFDLATGKAEQENNFPTSSIAFLGQNERNVA 800
801 IFTAGQESPIILRDGNGTIYPMAKDCMGGIRDPDWLDLPPISSLGMGVHS 850
851 LINLPANSTIKKKAAVIIMAVEKQTLMQHILRCDYEACRQYLMNLEQAVV 900
901 LEQNLQMLQTFISHRCDGNRNILHACVSVCFPTSNKETKEEEEAERSERN 950
951 TFAERLSAVEAIANAISVVSSNGPGNRAGSSSSRSLRLREMMRRSLRAAG 1000
1001 LGRHEAGASSSDHQDPVSPPIAPPSWVPDPPAMDPDGDIDFILAPAVGSL 1050
1051 TTAATGTGQGPSTSTIPGPSTEPSVVESKDRKANAHFILKLLCDSVVLQP 1100
1101 YLRELLSAKDARGMTPFMSAVSGRAYPAAITILETAQKIAKAEISSSEKE 1150
1151 EDVFMGMVCPSGTNPDDSPLYVLCCNDTCSFTWTGAEHINQDIFECRTCG 1200
1201 LLESLCCCTECARVCHKGHDCKLKRTSPTAYCDCWEKCKCKTLIAGQKSA 1250
1251 RLDLLYRLLTATNLVTLPNSRGEHLLLFLVQTVARQTVEHCQYRPPRIRE 1300
1301 DRNRKTASPEDSDMPDHDLEPPRFAQLALERVLQDWNALKSMIMFGSQEN 1350
1351 KDPLSASSRIGHLLPEEQVYLNQQSGTIRLDCFTHCLIVKCTADILLLDT 1400
1401 LLGTLVKELQNKYTPGRREEAIAVTMRFLRSVARVFVILSVEMASSKKKN 1450
1451 NFIPQPIGKCKRVFQALLPYAVEELCNVAESLIVPVRMGIARPTAPFTLA 1500
1501 STSIDAMQGSEELFSVEPLPPRPSSDQSSSSSQSQSSYIIRNPQQRRISQ 1550
1551 SQPVRGRDEEQDDIVSADVEEVEVVEGVAGEEDHHDEQEEHGEENAEAEG 1600
1601 QHDEHDEDGSDMELDLLAAAETESDSESNHSNQDNASGRRSVVTAATAGS 1650
1651 EAGASSVPAFFSEDDSQSNDSSDSDSSSSQSDDIEQETFMLDEPLERTTN 1700
1701 SSHANGAAQAPRSMQWAVRNTQHQRAASTAPSSTSTPAASSAGLIYIDPS 1750
1751 NLRRSGTISTSAAAAAAALEASNASSYLTSASSLARAYSIVIRQISDLMG 1800
1801 LIPKYNHLVYSQIPAAVKLTYQDAVNLQNYVEEKLIPTWNWMVSIMDSTE 1850
1851 AQLRYGSALASAGDPGHPNHPLHASQNSARRERMTAREEASLRTLEGRRR 1900
1901 ATLLSARQGMMSARGDFLNYALSLMRSHNDEHSDVLPVLDVCSLKHVAYV 1950
1951 FQALIYWIKAMNQQTTLDTPQLERKRTRELLELGIDNEDSEHENDDDTNQ 2000
2001 SATLNDKDDDSLPAETGQNHPFFRRSDSMTFLGCIPPNPFEVPLAEAIPL 2050
2051 ADQPHLLQPNARKEDLFGRPSQGLYSSSASSGKCLMEVTVDRNCLEVLPT 2100
2101 KMSYAANLKNVMNMQNRQKKEGEEQPVLPEETESSKPGPSAHDLAAQLKS 2150
2151 SLLAEIGLTESEGPPLTSFRPQCSFMGMVISHDMLLGRWRLSLELFGRVF 2200
2201 MEDVGAEPGSILTELGGFEVKESKFRREMEKLRNQQSRDLSLEVDRDRDL 2250
2251 LIQQTMRQLNNHFGRRCATTPMAVHRVKVTFKDEPGEGSGVARSFYTAIA 2300
2301 QAFLSNEKLPNLECIQNANKGTHTSLMQRLRNRGERDREREREREMRRSS 2350
2351 GLRAGSRRDRDRDFRRQLSIDTRPFRPASEGNPSDDPEPLPAHRQALGER 2400
2401 LYPRVQAMQPAFASKITGMLLELSPAQLLLLLASEDSLRARVDEAMELII 2450
2451 AHGRENGADSILDLGLVDSSEKVQQENRKRHGSSRSVVDMDLDDTDDGDD 2500
2501 NAPLFYQPGKRGFYTPRPGKNTEARLNCFRNIGRILGLCLLQNELCPITL 2550
2551 NRHVIKVLLGRKVNWHDFAFFDPVMYESLRQLILASQSSDADAVFSAMDL 2600
2601 AFAIDLCKEEGGGQVELIPNGVNIPVTPQNVYEYVRKYAEHRMLVVAEQP 2650
2651 LHAMRKGLLDVLPKNSLEDLTAEDFRLLVNGCGEVNVQMLISFTSFNDES 2700
2701 GENAEKLLQFKRWFWSIVEKMSMTERQDLVYFWTSSPSLPASEEGFQPMP 2750
2751 SITIRPPDDQHLPTANTCISRLYVPLYSSKQILKQKLLLAIKTKNFGFV 2799
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.