 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P02468 from www.uniprot.org...
The NucPred score for your sequence is 0.62 (see score help below)
1 MTGGGRAALALQPRGRLWPLLAVLAAVAGCVRAAMDECADEGGRPQRCMP 50
51 EFVNAAFNVTVVATNTCGTPPEEYCVQTGVTGVTKSCHLCDAGQQHLQHG 100
101 AAFLTDYNNQADTTWWQSQTMLAGVQYPNSINLTLHLGKAFDITYVRLKF 150
151 HTSRPESFAIYKRTREDGPWIPYQYYSGSCENTYSKANRGFIRTGGDEQQ 200
201 ALCTDEFSDISPLTGGNVAFSTLEGRPSAYNFDNSPVLQEWVTATDIRVT 250
251 LNRLNTFGDEVFNEPKVLKSYYYAISDFAVGGRCKCNGHASECVKNEFDK 300
301 LMCNCKHNTYGVDCEKCLPFFNDRPWRRATAESASESLPCDCNGRSQECY 350
351 FDPELYRSTGHGGHCTNCRDNTDGAKCERCRENFFRLGNTEACSPCHCSP 400
401 VGSLSTQCDSYGRCSCKPGVMGDKCDRCQPGFHSLTEAGCRPCSCDLRGS 450
451 TDECNVETGRCVCKDNVEGFNCERCKPGFFNLESSNPKGCTPCFCFGHSS 500
501 VCTNAVGYSVYDISSTFQIDEDGWRVEQRDGSEASLEWSSDRQDIAVISD 550
551 SYFPRYFIAPVKFLGNQVLSYGQNLSFSFRVDRRDTRLSAEDLVLEGAGL 600
601 RVSVPLIAQGNSYPSETTVKYIFRLHEATDYPWRPALSPFEFQKLLNNLT 650
651 SIKIRGTYSERTAGYLDDVTLQSARPGPGVPATWVESCTCPVGYGGQFCE 700
701 TCLPGYRRETPSLGPYSPCVLCTCNGHSETCDPETGVCDCRDNTAGPHCE 750
751 KCSDGYYGDSTLGTSSDCQPCPCPGGSSCAIVPKTKEVVCTHCPTGTAGK 800
801 RCELCDDGYFGDPLGSNGPVRLCRPCQCNDNIDPNAVGNCNRLTGECLKC 850
851 IYNTAGFYCDRCKEGFFGNPLAPNPADKCKACACNPYGTVQQQSSCNPVT 900
901 GQCQCLPHVSGRDCGTCDPGYYNLQSGQGCERCDCHALGSTNGQCDIRTG 950
951 QCECQPGITGQHCERCETNHFGFGPEGCKPCDCHHEGSLSLQCKDDGRCE 1000
1001 CREGFVGNRCDQCEENYFYNRSWPGCQECPACYRLVKDKAAEHRVKLQEL 1050
1051 ESLIANLGTGDDMVTDQAFEDRLKEAEREVTDLLREAQEVKDVDQNLMDR 1100
1101 LQRVNSSLHSQISRLQNIRNTIEETGILAERARSRVESTEQLIEIASREL 1150
1151 EKAKMAAANVSITQPESTGEPNNMTLLAEEARRLAERHKQEADDIVRVAK 1200
1201 TANETSAEAYNLLLRTLAGENQTALEIEELNRKYEQAKNISQDLEKQAAR 1250
1251 VHEEAKRAGDKAVEIYASVAQLTPVDSEALENEANKIKKEAADLDRLIDQ 1300
1301 KLKDYEDLREDMRGKEHEVKNLLEKGKAEQQTADQLLARADAAKALAEEA 1350
1351 AKKGRSTLQEANDILNNLKDFDRRVNDNKTAAEEALRRIPAINRTIAEAN 1400
1401 EKTREAQLALGNAAADATEAKNKAHEAERIASAVQKNATSTKADAERTFG 1450
1451 EVTDLDNEVNGMLRQLEEAENELKRKQDDADQDMMMAGMASQAAQEAELN 1500
1501 ARKAKNSVSSLLSQLNNLLDQLGQLDTVDLNKLNEIEGSLNKAKDEMKAS 1550
1551 DLDRKVSDLESEARKQEAAIMDYNRDIAEIIKDIHNLEDIKKTLPTGCFN 1600
1601 TPSIEKP 1607
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.