SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P04146 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  MDKAKRNIKPFDGEKYAIWKFRIRALLAEQDVLKVVDGLMPNEVDDSWKK    50
51 AERCAKSTIIEYLSDSFLNFATSDITARQILENLDAVYERKSLASQLALR 100
101 KRLLSLKLSSEMSLLSHFHIFDELISELLAAGAKIEEMDKISHLLITLPS 150
151 CYDGIITAIETLSEENLTLAFVKNRLLDQEIKIKNDHNDTSKKVMNAIVH 200
201 NNNNTYKNNLFKNRVTKPKKIFKGNSKYKVKCHHCGREGHIKKDCFHYKR 250
251 ILNNKNKENEKQVQTATSHGIAFMVKEVNNTSVMDNCGFVLDSGASDHLI 300
301 NDESLYTDSVEVVPPLKIAVAKQGEFIYATKRGIVRLRNDHEITLEDVLF 350
351 CKEAAGNLMSVKRLQEAGMSIEFDKSGVTISKNGLMVVKNSGMLNNVPVI 400
401 NFQAYSINAKHKNNFRLWHERFGHISDGKLLEIKRKNMFSDQSLLNNLEL 450
451 SCEICEPCLNGKQARLPFKQLKDKTHIKRPLFVVHSDVCGPITPVTLDDK 500
501 NYFVIFVDQFTHYCVTYLIKYKSDVFSMFQDFVAKSEAHFNLKVVYLYID 550
551 NGREYLSNEMRQFCVKKGISYHLTVPHTPQLNGVSERMIRTITEKARTMV 600
601 SGAKLDKSFWGEAVLTATYLINRIPSRALVDSSKTPYEMWHNKKPYLKHL 650
651 RVFGATVYVHIKNKQGKFDDKSFKSIFVGYEPNGFKLWDAVNEKFIVARD 700
701 VVVDETNMVNSRAVKFETVFLKDSKESENKNFPNDSRKIIQTEFPNESKE 750
751 CDNIQFLKDSKESENKNFPNDSRKIIQTEFPNESKECDNIQFLKDSKESN 800
801 KYFLNESKKRKRDDHLNESKGSGNPNESRESETAEHLKEIGIDNPTKNDG 850
851 IEIINRRSERLKTKPQISYNEEDNSLNKVVLNAHTIFNDVPNSFDEIQYR 900
901 DDKSSWEEAINTELNAHKINNTWTITKRPENKNIVDSRWVFSVKYNELGN 950
951 PIRYKARLVARGFTQKYQIDYEETFAPVARISSFRFILSLVIQYNLKVHQ 1000
1001 MDVKTAFLNGTLKEEIYMRLPQGISCNSDNVCKLNKAIYGLKQAARCWFE 1050
1051 VFEQALKECEFVNSSVDRCIYILDKGNINENIYVLLYVDDVVIATGDMTR 1100
1101 MNNFKRYLMEKFRMTDLNEIKHFIGIRIEMQEDKIYLSQSAYVKKILSKF 1150
1151 NMENCNAVSTPLPSKINYELLNSDEDCNTPCRSLIGCLMYIMLCTRPDLT 1200
1201 TAVNILSRYSSKNNSELWQNLKRVLRYLKGTIDMKLIFKKNLAFENKIIG 1250
1251 YVDSDWAGSEIDRKSTTGYLFKMFDFNLICWNTKRQNSVAASSTEAEYMA 1300
1301 LFEAVREALWLKFLLTSINIKLENPIKIYEDNQGCISIANNPSCHKRAKH 1350
1351 IDIKYHFAREQVQNNVICLEYIPTENQLADIFTKPLPAARFVELRDKLGL 1400
1401 LQDDQSNAE 1409

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.