SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P04157 from www.uniprot.org...

The NucPred score for your sequence is 0.92 (see score help below)

   1  MYLWLKLLAFSLALLGPEVFVTGQGTTDDGLDTTEIVLLPQTDPLPARTT    50
51 EFTPPSISERGNGSSETTYLPGFSSTLMPHLTPQPDSQTPSARGADTQTL 100
101 SSQADLTTLTAAPSGETDPPGVPEESTVPETFPGGTPILARNSTAPSPTH 150
151 TSNVSTTDISSGANLTTPAPSTLGFASNTTTSTEIATPQTKPSCDEKFGN 200
201 VTVRYIYDDSSKNFNANLEGDKKPKCEYTDCEKELKNLPECSQKNVTLSN 250
251 GSCTPDKIINLDVPPGTHNFNLTNCTPDIEANTSICLEWKIKNKFTCDIQ 300
301 KISYNFRCTPEMKTFALDKHGTLWLHNLTVRTNYTCAAEVLYNNVILLKQ 350
351 DRRVQTDFGTPEMLPHVQCKNSTNSTTLVSWAEPASKHHGYILCYKKTPS 400
401 EKCENLANDVNSFEVKNLRPYTEYTVSLFAYVIGRVQRNGPAKDCNFRTK 450
451 AARPGKVNGMKTSRASDNSINVTCNSPYEINGPEARYILEVKSGGSLVKT 500
501 FNQSTCKFVVDNLYYSTDYEFLVYFYNGEYLGDPEIKPQSTSYNSKALII 550
551 FLVFLIIVTSIALLVVLYKIYDLRKKRSSNLDEQQELVERDEEKQLINVD 600
601 PIHSDLLLETYKRKIADEGRLFLAEFQSIPRVFSKFPIKDARKSQNQNKN 650
651 RYVDILPYDYNRVELSEINGDAGSTYINASYIDGFKEPRKYIAAQGPRDE 700
701 TVDDFWKMIWEQKATVIVMVTRCEEGNRNKCAEYWPCMEEGTRTFRDVVV 750
751 TINDHKRCPDYIIQKLSIAHKKEKATGREVTHIQFTSWPDHGVPEDPHLL 800
801 LKLRRRVNAFSNFFSGPIVVHCSAGVGRTGTYIGIDAMLESLEAEGKVDV 850
851 YGYVVNLRRQRCLMVQVEAQYILIHQALVEYNQFGETEVNLSELHSCLQN 900
901 LKKRDPPSDPSPLEAEYQRLPSYRSWRTQHIGNQEENKKKNRSSNVVPYD 950
951 FNRVPLKHELEMSKESEAESDESSDEDSDSEETSKYINASFVMSYWKPEM 1000
1001 MIAAQGPLKETIGDFWQMIFQRKVKVIVMLTELMSGDQEVCAQYWGEGKQ 1050
1051 TYGDMEVMLKDTNKSSAYILRAFELRHSKRKEPRTVYQYQCTTWKGEELP 1100
1101 AEPKDLVTLIQNIKQKLPKSGSEGMKYHKHASILVHCRDGSQQTGLFCAL 1150
1151 FNLLESAETEDVVDVFQVVKSLRKARPGMVGSFEQYQFLYDIMASIYPTQ 1200
1201 NGQVKKANSQDKIEFHNEVDGAKQDANCVQPADPLNKAQEDSKEVGASEP 1250
1251 ASGSEEPEHSANGPMSPALTPSS 1273

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.